Abstract:
In a mounting structure including a first electrode and a second electrode electrically connected to each other via a conductive adhesive, the periphery of an adhesion portion between at least one of the electrodes and the conductive adhesive is covered with an electrical insulating layer, whereby the adhesion portion is reinforced from the periphery. The electrical insulating layer may be formed by dissolving a binder resin component of the conductive adhesive in a solvent. This increases the concentration of a conductive filler in the conductive adhesive, so that the conductivity of the adhesion portion is also enhanced.
Abstract:
In a mounting structure including a first electrode and a second electrode electrically connected to each other via a conductive adhesive, the periphery of an adhesion portion between at least one of the electrodes and the conductive adhesive is covered with an electrical insulating layer, whereby the adhesion portion is reinforced from the periphery. The electrical insulating layer may be formed by dissolving a binder resin component of the conductive adhesive in a solvent. This increases the concentration of a conductive filler in the conductive adhesive, so that the conductivity of the adhesion portion is also enhanced.
Abstract:
An electrode structure for a semiconductor device and a method for forming the electrode structure, and a mounted body including the semiconductor device are provided in which the semiconductor device can be easily connected to a circuit board with high reliability. An aluminum electrode is formed on an IC substrate. A passivation film is formed on the IC substrate so as to cover the peripheral portion of the aluminum electrode. A bump electrode is formed on the aluminum electrode by a wire bonding method. An aluminum oxide film is formed on the surface of the aluminum electrode that is exposed around the bump electrode. A conductive adhesive is applied as a bonding layer to the tip portion of the bump electrode of the semiconductor device by a transfer method or a printing method. The semiconductor device is aligned in the face-down state in such a manner that the bump electrode abuts on a terminal electrode of a circuit board, and is provided on a circuit board. In this state, the conductive adhesive is hardened. A gap between the IC substrate and the circuit board is filled with an insulating resin.
Abstract:
A mounting structure is formed by flip-chip mounting a semiconductor device onto a substrate. An electrical connecting portion of the semiconductor device is connected to an electrical connecting portion of the substrate by means of an electrically conductive adhesive. A region of the semiconductor device which is not involved in electrical connection is bonded to a region of the substrate which is not involved in electrical connection by means of an adhesive. A test of electrical properties is performed on the semiconductor device and the substrate which are connected to each other. If it is determined that the electrical properties are poor in the test, the semiconductor device is separated from the substrate after heating a bonding place of the adhesive up to a temperature higher than a glass transition point or a melting point of the adhesive. If it is determined that the electrical properties are good in the test, the semiconductor device and the substrate are sealed by means of a sealing resin.
Abstract:
A circuit board is configured so as to include not less than two wiring layers, an insulator layer for electric insulation between the wiring layers, and an inner-via-hole conductive member provided in the insulator layer in a thickness direction of the insulator layer, for electric connection between the wiring layers. The insulator layer is made of a composite material containing an organic resin and a material having a smaller thermal expansion coefficient than that of the organic resin, and includes a surface part, a core part, and a surface part laminated in the stated order, the surface part having a high content of the organic resin, the core part having a low content of the organic resin. The wiring layers have a land portion that is connected with the inner-via-hole conductive member, the land portion being embedded so as to be substantially in contact with the core part, and the inner-via-hole conductive member has a thickness substantially equal to a thickness of the core part. According to this configuration, a part of the metal foil is embedded in the insulator layer so as to be in contact with the core layer. Therefore, this makes it possible to provide a circuit board in which portions of the conductive material can be selectively compressed, and which hence is capable of ensuring stable connection between layers.
Abstract:
A manufacturing method for a semiconductor device using a wire bonding method using a metal wire. In the wire bonding method, an impact load applied when a metal ball formed at the tip of the metal wire by electric discharge is brought into contact with a terminal electrode of a semiconductor device is smaller than a static load applied after the metal ball is brought into contact with the terminal electrode. The method makes it possible to prevent an element or wiring from being damaged while securing the pressure necessary for bonding the metal ball to the terminal electrode even when the terminal electrode is placed on the element or the wiring.
Abstract:
At least two electric elements (203) such as semiconductor chips or surface acoustic wave devices are mounted on wiring patterns (201), and the electric elements (203) are sealed with a thermosetting resin composition (204). An upper surface of the at least two electric elements (203) and an upper surface of the thermosetting resin composition (204) are abraded at the same time, thereby forming surfaces substantially flush with each other. Since they are abraded while being sealed with the thermosetting resin composition (204), it is possible to reduce the thickness without damaging the electric elements (203). Also, the electric elements (203) and the wiring patterns (201) can be prevented from being contaminated by an abrasive liquid. In this manner, it is possible to obtain an electric element built-in module whose thickness can be reduced while maintaining its mechanical strength.
Abstract:
A surface acoustic wave device of the present invention includes a piezoelectric substrate, a plurality of comb electrodes for exciting a surface acoustic wave, disposed on a principal plane of the piezoelectric substrate, a plurality of bumps disposed on the principal plane, and an insulating sheet disposed so as to be opposed to the principal plane, wherein the bumps and the comb electrodes are connected electrically to each other, and the bumps penetrate through the insulating sheet.
Abstract:
A circuit board is configured so as to include not less than two wiring layers, an insulator layer for electric insulation between the wiring layers, and an inner-via-hole conductive member provided in the insulator layer in a thickness direction of the insulator layer, for electric connection between the wiring layers. The insulator layer is made of a composite material containing an organic resin and a material having a smaller thermal expansion coefficient than that of the organic resin, and includes a surface part, a core part, and a surface part laminated in the stated order, the surface part having a high content of the organic resin, the core part having a low content of the organic resin. The wiring layers have a land portion that is connected with the inner-via-hole conductive member, the land portion being embedded so as to be substantially in contact with the core part, and the inner-via-hole conductive member has a thickness substantially equal to a thickness of the core part. According to this configuration, a part of the metal foil is embedded in the insulator layer so as to be in contact with the core layer. Therefore, this makes it possible to provide a circuit board in which portions of the conductive material can be selectively compressed, and which hence is capable of ensuring stable connection between layers.