摘要:
Arrays of planar solid state batteries are stacked in an aligned arrangement for subsequent separation into individual battery stacks. Prior to stacking, a redistribution layer (RDL) is formed over a surface of each wafer that contains an array; each RDL includes first and second groups of conductive traces, each of the first extending laterally from a corresponding positive battery contact, and each of the second extending laterally from a corresponding negative battery contact. Conductive vias, formed before or after stacking, ultimately couple together corresponding contacts of aligned batteries. If before, each via extends through a corresponding battery contact of each wafer and is coupled to a corresponding conductive layer that is included in another RDL formed over an opposite surface of each wafer. If after, each via extends through corresponding aligned conductive traces and, upon separation of individual battery stacks, becomes an exposed conductive channel of a corresponding battery stack.
摘要:
Arrays of planar solid state batteries are stacked in an aligned arrangement for subsequent separation into individual battery stacks. Prior to stacking, a redistribution layer (RDL) is formed over a surface of each wafer that contains an array; each RDL includes first and second groups of conductive traces, each of the first extending laterally from a corresponding positive battery contact, and each of the second extending laterally from a corresponding negative battery contact. Conductive vias, formed before or after stacking, ultimately couple together corresponding contacts of aligned batteries. If before, each via extends through a corresponding battery contact of each wafer and is coupled to a corresponding conductive layer that is included in another RDL formed over an opposite surface of each wafer. If after, each via extends through corresponding aligned conductive traces and, upon separation of individual battery stacks, becomes an exposed conductive channel of a corresponding battery stack.
摘要:
A medical device includes a first substrate, a second substrate, a control module, and an energy storage device. The first substrate includes at least one of a first semiconductor material and a first insulating material. The second substrate includes at least one of a second semiconductor material and a second insulating material. The second substrate is bonded to the first substrate such that the first and second substrates define an enclosed cavity between the first and second substrates. The control module is disposed within the enclosed cavity. The control module is configured to at least one of determine a physiological parameter of a patient and deliver electrical stimulation to the patient. The energy storage device is disposed within the cavity and is configured to supply power to the control module.
摘要:
A medical device includes a first substrate, a second substrate, a control module, and an energy storage device. The first substrate includes at least one of a first semiconductor material and a first insulating material. The second substrate includes at least one of a second semiconductor material and a second insulating material. The second substrate is bonded to the first substrate such that the first and second substrates define an enclosed cavity between the first and second substrates. The control module is disposed within the enclosed cavity. The control module is configured to at least one of determine a physiological parameter of a patient and deliver electrical stimulation to the patient. The energy storage device is disposed within the cavity and is configured to supply power to the control module.
摘要:
An implantable medical device comprises an enclosure, a first plurality of electrical contacts disposed within the enclosure, at least a first electrical component secured within the enclosure, a second plurality of electrical contacts on the first electrical component, and a terminal array for providing electrical coupling between the first and second plurality of electrical contacts. The terminal array comprises a housing having a plurality of apertures therethrough, the housing having a first side and a second opposite side. Each of a plurality of conductive terminals is positioned within one of the plurality of apertures and has a first contact region proximate the first side of the housing and a second contact region proximate the second side of the housing. The first contact region is electrically coupled to one of the first plurality of electrical contacts, and the second contact region is electrically coupled to one of the second plurality of contacts.
摘要:
The present invention is directed to an interconnect for an implantable medical device. The interconnect includes a pad and a first layer introduced over the pad. At least one of the pad or the first layer comprise a negative coefficient of thermal expansion (CTE) material.
摘要:
An implantable medical device (IMD) is disclosed. The IMD includes a first substrate having a front side and a backside. A first via is formed in the front side, the via extending from a bottom point in the front side to a first height located at a surface of the front side. A first conductive pad is formed in the first via, the first conductive pad having an exposed top surface lower than first height. A second substrate is coupled to the first substrate, the second substrate having a second via formed in the front side, the via extending from a bottom point in the front side to a second height located at a surface of the front side. A second conductive pad is formed in the second via, the second conductive pad having an exposed top surface lower than second height. The coupled substrates are heated until a portion of one or both conductive pads reflow, dewet, agglomerate, and merge to form an interconnect, hermetic seal, or both depending on the requirements of the device.
摘要:
A bonding tool for use in a laser bonding apparatus comprises an elongated body portion and a foot portion coupled thereto. The foot portion extends substantially transversely from the body portion and has a laser aperture and a guide channel therethrough. The guide channel is disposed between the body portion and the laser aperture.
摘要:
An implantable medical device substrate is free form cut to the shape of the interior of the device. The free form shape allows more efficient use of not only the interior space of the device but also of the substrate itself. Integrated circuit components are formed to fit the shape of the substrate, freeing areas in the device for additional components, or allowing the device to be made smaller through a maximized use of the available space-volume.
摘要:
An implantable medical device substrate is free form cut to the shape of the interior of the device. The free form shape allows more efficient use of not only the interior space of the device but also of the substrate itself. Integrated circuit components are formed to fit the shape of the substrate, freeing areas in the device for additional components, or allowing the device to be made smaller through a maximized use of the available space-volume.