Abstract:
The present invention relates to a flexible composite that can be set to become rigid or semi-rigid, the composite comprising: a first layer; a second layer opposing the first layer and separated from the first layer by a space; a fill material located in the space between the first and second layers, which is capable of setting to a rigid or semi-rigid solid on the addition of a liquid, gas or radiation; a plurality of elements extending substantially into the space from the first layer and/or the second layer and which may pass through the opposing layer or join with other elements present in the space from an opposing layer, thereby forming linking elements for joining the layers together; and wherein the unset fill material is provided in the space at a pressure such that tension is applied one or more of the linking elements and to cause the first and/or second layers to bulge outwards relative to the longitudinal length of said one or more linking elements under tension.
Abstract:
The present invention provides a multilayer porous membrane having both high safety and practicality, especially as a separator for a non-aqueous electrolyte battery and comprising a porous layer containing an inorganic filler and a resin binder on at least one surface of a polyolefin resin porous membrane, wherein the porous layer simultaneously satisfies the following (A) to (C): (A) the inorganic filler has an average particle diameter of 0.1 μm or more and 3.0 μm or less, (B) a ratio of an amount of the resin binder to a total amount of the inorganic filler and the resin binder is 1% or more and 8% or less in terms of volume fraction, and (C) a ratio of a layer thickness of the porous layer to a total layer thickness is 15% or more and 50% or less.
Abstract:
The present invention is directed to a material adapted to reduce vibration and, more specifically, to a material adapted to dissipate and evenly distribute transmitted vibrations. The material is particularly suited for impact and/or heavy load vibration resistance.
Abstract:
An assembly for protection against explosion in form of a substantially plate-shaped multi-ply element includes two or outer walls (1,2) and at least one intermediate layer of a ceramic material presenting a density in the range of approximately 0.3 to 1.5 g/cm3, a pore diameter in the range of approximately 20 to 120 μand a physical extent in the range of approximately 0.5 to 10mm.
Abstract translation:用于防止基本上板状多层元件形式的爆炸的组件包括两个或外壁(1,2)和至少一个陶瓷材料的中间层,其密度在约0.3至1.5g的范围内 / cm 3,孔径在约20至120μm的范围内,物理范围在约0.5至10mm的范围内。
Abstract:
An elastic block, which is adapted to be paved on an underlying base for absorbing impacts, includes a laminate composed of a powdery rubber-containing layer and a vulcanized rubber layer underlying the powdery rubber-containing layer, the powdery rubber-containing layer being a compression molded layer composed of a mixture comprising elastic chips having the particle size of 0.5 to 10 mm and a resin binder, the vulcanized rubber layer being a vulcanized molding of an unvulcanized rubber layer, wherein the elastic chips are fixedly bonded to one another with the resin binder and the powdery rubber-containing layer is adhered to the vulcanized rubber layer when the mixture layer and the unvulcanized rubber layer are subjected to pressurization and vulcanization.
Abstract:
An article of footwear has an upper, an outsole attached to the upper, and a midsole. The outsole includes a ground-engaging surface and an inner surface disposed on opposite sides. The midsole has a footbed and a bottom surface disposed on opposite sides. The bottom surface opposes the inner surface to define a cavity therebetween. The article of footwear also includes a first series of projections extending into the cavity from one of the inner surface and the bottom surface in a first direction toward the other of the inner surface and the bottom surface. The article of footwear also includes a second series of projection extending into the cavity from one of the inner surface and the bottom surface in the first direction toward the other of the inner surface and the bottom surface. The article of footwear also includes a quantity of particulate matter disposed within the cavity.
Abstract:
A method for making an electrothermal actuator requires a carbon nanotube paper being provided. The carbon nanotube paper is cut along a cutting-line to form a patterned carbon nanotube paper. At least two electrodes are formed on the patterned carbon nanotube paper. Finally, the electrothermal actuator is obtained by forming a flexible polymer layer on the patterned carbon nanotube paper.
Abstract:
Provided is a tile for concealing an underlying surface. The tile includes a base including a downward-facing surface that is to oppose an underlying surface on which the tile is to rest. The base is formed, at least in part, from a material including a combination of crumb rubber and rice hull material. A plurality of feet extend in a downwardly direction from the downward-facing surface to contact the underlying surface on which the tile is to rest and separate the downward-facing surface from the underlying surface. A cap is coupled to a surface of the base opposite the downward-facing surface comprising the feet.
Abstract:
A process and system for making a laminated surface covering and the surface covering itself are described. The covering includes several layers bonded to each other. The system performs the process. One example of the process includes passing a first material across a first conveyor, passing a second material across a second conveyor, passing a bonding material across a third conveyor, contacting the first material and the second material to the bonding material, and heating at least one of the first material and the second material. The process also includes introducing the first material, the second material, and the bonding material into a pressure zone such that the bonding material is introduced between a bottom surface of the first material and a top surface of the second material. The process applies pressure to bond the first material and second material together via the bonding material to produce a laminated material.
Abstract:
An apparatus for filling joints in precast concrete structures includes a core that has exceptionally low creep and conforms to ASTM D 1752 made of controlled particle size composites of recycled cellular rubber and plastic materials in the form of a rectangular slab. Holes are drilled through a central area and countersink recesses are formed around the holes. An outer coating of a thermoplastic polyurethane/polyurea elastomer system of a thickness of 0.075 inch covers the slab and countersink recesses. The coated core is abrasion and UV resistant while having the creep characteristics needed to make a dam expansion joint filler.
Abstract translation:用于在预制混凝土结构中填充接头的装置包括具有特别低的蠕变并符合ASTM D 1752的芯,其由回收的多孔橡胶的受控粒度复合材料和矩形板的形式的塑料材料制成。 孔穿过中心区域,孔周围形成埋头孔。 厚度为0.075英寸的热塑性聚氨酯/聚脲弹性体系统的外涂层覆盖板坯和埋头孔凹槽。 涂覆的芯具有耐磨性和抗紫外线性,同时具有制造大坝膨胀接头填料所需的蠕变特性。