Abstract:
A semiconductor package for a side by side die configuration may include a substrate having a cavity, a bridge interposer positioned within the cavity and having an active side facing active sides of a first die and a second die and partially horizontally overlapping the first die and the second die to provide an interconnection between the first die and the second die, and a thermal element attached to backsides of the first die and the second die to provide a heat path and heat storage for the first die and the second die.
Abstract:
Techniques and mechanisms to facilitate connection with one or more integrated circuit (IC) dies of a packaged device. In an embodiment, the packaged device includes a first substrate coupled to a first side of a package, and a second substrate coupled to a second side of the package opposite the first side. Circuitry, coupled via the first substrate to one or more IC dies disposed in the package, includes a circuit structure disposed at a cantilever portion of the first substrate. The cantilever portion extends past one or both of an edge of the first side and an edge of the second side. In another embodiment, a hardware interface disposed on the second substrate enables coupling of the packaged device to another device.
Abstract:
A structure and method for manufacturing the same for manufacturing a contact structure for microelectronics manufacturing including the steps of forming first and second metal sheets to form a plurality of outwardly extending bump each defining a cavity. Symmetrically mating the first and second metal sheets in opposing relation to each other to form upper and lower bumps each defining an enclosure therebetween wherein the mated first and second sheets form a contact structure. Coating the contact structure with an insulating material, and fabricating helix shaped contacts from upper and lower bumps. The helix shaped contacts having first and second portions being in mirror image relationship to each other.
Abstract:
A component can include a generally planar element, a reinforcing dielectric layer overlying the generally planar element, an encapsulation overlying the reinforcing dielectric layer, and a plurality of wire bonds. Each wire bond can have a tip at a major surface of the encapsulation. The wire bonds can have first portions extending within the reinforcing dielectric layer. The first portions of at least some of the wire bonds can have bends that change an extension direction of the respective wire bond. The reinforcing dielectric layer can have protruding regions surrounding respective ones of the wire bonds, the protruding regions extending to greater peak heights from the first surface of the generally planar element than portions of the reinforcing dielectric layer between adjacent ones of the protruding regions. The peak heights of the protruding regions can coincide with points of contact between the reinforcing dielectric layer and individual wire bonds.
Abstract:
A microelectronic assembly can be made by joining first and second subassemblies by electrically conductive masses to connect electrically conductive elements on support elements of each subassembly. A patterned layer of photo-imageable material may overlie a surface of one of the support elements and have openings with cross-sectional dimensions which are constant or monotonically increasing with height from the surface of that support element, where the masses extend through the openings and have dimensions defined thereby. An encapsulation can be formed by flowing an encapsulant into a space between the joined first and second subassemblies.
Abstract:
본 발명은 단일 칩 패키지에 관한 것으로 랜드 그리드 어레이(LGA:Land Grid Arrary) 접합을 이용한 단일 칩 패키지를 위한 장치에 있어서, 적어도 하나 이상의 기판의 층(layer)을 가지고, 최 하위 기판의 층에 적어도 하나의 제 1 칩 영역 및 적어도 하나의 제 2 칩 영역을 구비하고, 상기 제 1 칩 영역에 접합된 적어도 하나의 집적회로 칩으로부터의 신호를 coaxial 형태 또는 CPW(Co-Planar Waveguide guide) 형태로 수직구조의 전송선로 트랜지션을 구성하고, 상기 최 하위 층에 PCB(Printed Circuit Board)와 연결하기 위한 LGA 접합 패드를 구비하는 다층 회로 기판과, 상기 제 1 칩 영역 및 상기 2칩 영역에 접합되는 적어도 하나의 집적회로 칩과, 상기 LGA 접합 패드를 통해 상기 다층 회로 기판과 LGA 접합으로 연결되는 상기 PCB를 포함하는 것을 특징으로 한다.
Abstract:
A rigid wave pattern formed on a first side of a substrate in a semiconductor die package. The rigid wave pattern aligns with and overlies the contact fingers formed on the second side of the substrate. When the substrate and dice are encased during the molding process, the rigid wave pattern effectively reduces deformation of and stresses on the dice, therefore substantially alleviating die cracking.
Abstract:
One or more example embodiments of miniaturized electric devices are disclosed. In some example embodiments, the electric device includes a first thin substrate layer and a second thin substrate layer positioned above the first thin substrate layer. The electric device further includes one or more components electrically coupled to the first thin substrate layer. An overmold compound is deposited covering the one or more components between the first thin substrate and the second thin substrate. The electric device further includes one or more through mold vias that electrically and communicatively connect the first thin substrate layer and the second thin substrate layer.
Abstract:
A semiconductor substrate according to some examples of the disclosure may include a substrate with a cavity in a top surface of the substrate, a plurality of cavity interconnections embedded below a bottom surface of the cavity and extending to a bottom surface of the substrate, and a plurality of side interconnections to either side of the cavity extending from the top surface of the substrate to the bottom surface of the substrate. Each of the plurality of side interconnections may include an electrically conductive stop etch layer in the same horizontal plane as the bottom of the cavity.