Abstract:
In an example, the present invention provides a gallium and nitrogen containing multilayered structure, and related method. The structure has a plurality of gallium and nitrogen containing semiconductor substrates, each of the gallium and nitrogen containing semiconductor substrates (“substrates”) having a plurality of epitaxially grown layers overlaying a top-side of each of the substrates. The structure has an orientation of a reference crystal direction for each of the substrates. The structure has a first handle substrate coupled to each of the substrates such that each of the substrates is aligned to a spatial region configured in a selected direction of the first handle substrate, which has a larger spatial region than a sum of a total backside region of plurality of the substrates to be arranged in a tiled configuration overlying the first handle substrate. The reference crystal direction for each of the substrates is parallel to the spatial region in the selected direction within 10 degrees or less. The structure has a first bonding medium provided between the first handle substrate and each of the substrate while maintaining the alignment between reference crystal orientation and the selected direction of the first handle substrate; and a processed region formed overlying each of the substrates configured concurrently while being bonded to the first handle substrate. Depending upon the embodiment, the processed region can include any combination of the aforementioned processing steps and/or steps.
Abstract:
An optical device includes a gallium nitride substrate member having an m-plane nonpolar crystalline surface region characterized by an orientation of about −1 degree towards (000-1) and less than about +/−0.3 degrees towards (11-20). The device also has a laser stripe region formed overlying a portion of the m-plane nonpolar crystalline orientation surface region. In a preferred embodiment, the laser stripe region is characterized by a cavity orientation that is substantially parallel to the c-direction, the laser stripe region having a first end and a second end. The device includes a first cleaved c-face facet, which is coated, provided on the first end of the laser stripe region. The device also has a second cleaved c-face facet, which is exposed, provided on the second end of the laser stripe region.
Abstract:
Method and devices for emitting electromagnetic radiation at high power using nonpolar or semipolar gallium containing substrates such as GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, are provided. The laser devices include multiple laser emitters integrated onto a substrate (in a module), which emit green or blue laser radiation.
Abstract:
A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
Abstract:
A gallium and nitrogen containing laser diode device. The device has a gallium and nitrogen containing substrate material comprising a surface region. The surface region is configured on either a non-polar crystal orientation or a semi-polar crystal orientation. The device has a recessed region formed within a second region of the substrate material, the second region being between a first region and a third region. The recessed region is configured to block a plurality of defects from migrating from the first region to the third region. The device has an epitaxially formed gallium and nitrogen containing region formed overlying the third region. The epitaxially formed gallium and nitrogen containing region is substantially free from defects migrating from the first region and an active region formed overlying the third region.
Abstract:
A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.
Abstract:
The present invention is directed to display technologies. More specifically, various embodiments of the present invention provide projection display systems where one or more laser diodes are used as light source for illustrating images. In one set of embodiments, the present invention provides projector systems that utilize blue and/or green laser fabricated using gallium nitride containing material. In another set of embodiments, the present invention provides projection systems having digital lighting processing engines illuminated by blue and/or green laser devices. In one embodiment, the present invention provides a 3D display system. There are other embodiments as well.
Abstract:
A method and device for emitting electromagnetic radiation at high power using nonpolar or semipolar gallium containing substrates such as GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, is provided. In various embodiments, the laser device includes plural laser emitters emitting green or blue laser light, integrated a substrate.
Abstract:
A portable lighting apparatus is provided with a gallium-and-nitrogen containing laser diode based white light source combined with an infrared illumination source which are driven by drivers disposed in a printed circuit board assembly enclosed in a compact housing and powered by a portable power supply therein. The portable lighting apparatus includes a first wavelength converter configured to output a white-color emission and an infrared emission. A beam shaper may be configured to direct the white-color emission and the infrared emission to a front aperture of a compact housing of the portable lighting apparatus. An optical transmitting unit is configured to project or transmit a directional light beam of the white light emission and/or the infrared emission for illuminating a target of interest, transmitting a pulsed sensing signal or modulated data signal generated by the drivers therein. In some configurations, detectors are included for depth sensing and visible/infrared light communications.