Abstract:
An image sensor according to an example embodiment concepts includes a pixel array including pixels, and each of the pixels includes photoelectric conversion elements. The photoelectric conversion elements independently operating to detect a phase difference. The image sensor further includes a control circuit configured to independently control exposure times of each of the photoelectric conversion elements included in each of the pixels.
Abstract:
The present invention relates to a powertrain for an automatic transmission. The powertrain for an automatic transmission consisting of an input shaft, an output shaft and first to third planetary gear sets comprises: first to seventh actuating elements constituting the first to third planetary gear sets; and shifting elements including first to fourth clutches and first and second brakes, wherein at least two of the shifting elements are actuated so that the first to seventh actuating elements are driven or restrained, thereby implementing eight forward speed and two reverse speed ratios.
Abstract:
An apparatus for cooling a spent fuel pool having a heat exchanger includes a cooling water pool positioned above the spent fuel pool; a floating device configured to be elevated according to a water level of a cooling water in the spent fuel pool; and an emergency cooling water supply pipe configured to form a path through which the cooling water of the cooling water pool is moved to the spent fuel pool and configured to include a floating valve that opens or closes a flow passage of the cooling water in connection with the elevation of the floating device.
Abstract:
A magnetic tunnel junction (MTJ) structure includes a fixed layer pattern structure having a perpendicular magnetization direction, a tunnel barrier pattern on the fixed layer pattern structure, a free layer pattern on the tunnel barrier pattern, the free layer pattern having a perpendicular magnetization direction, a first surface magnetism induction pattern on the free layer pattern, the first surface magnetism induction pattern inducing a perpendicular magnetism in a surface of the free layer pattern, a conductive pattern on the first surface magnetism induction pattern, and a ferromagnetic pattern on the conductive pattern.
Abstract:
A memory device, system, and/or method are provided for performing a page state informing function. The memory device may compare one or more row addresses received along with a command, determine the page open/close state according to a page hit or miss generated as a result of comparison, count read or write commands with respect to pages corresponding to a same row address, and determine the page open/close state according to a read or write command number generated as a result of counting. The memory device may determine a page open/close state with respect to a corresponding page based on a page hit/miss and a read or write command number and output a flag signal. The memory device may provide the page open/close state for each channel. A memory controller may establish different page open/close policies for each channel.
Abstract:
The present invention is directed to a device, and method of operation, for a fuel cell which uses bubble-based pumping to self-pump the fuel to the anode, and a single, common channel separating the anode from the cathode through which a mixed fuel and electrolyte flow. The fuel cell includes a single channel having two of its sides formed by the anode and the cathode, each having a suitable catalyst. A bubble generating region is formed in the anode and cathode reaction area of the channel. A one-way valve is located upstream of the bubble generating region. A vent for venting bubbles is disposed over a portion of the channel downstream of the bubble generating region. The fuel cell may be advantageously used to build miniature fuel cells for miniature electronic devices, or scaled to build larger fuel cells for larger electronic devices.
Abstract:
A battery comprises: a battery cell; and tabs configured as one pair of an anode tab and a cathode tab and included in the battery cell. At least one of the anode tab and the cathode tab is configured in such a way that a welding region exposed outside the battery cell and a reaction region positioned in the battery cell are formed of different metals and are joined to each other.
Abstract:
Semiconductor packages including stacked semiconductor chips are provided. The semiconductor packages may include first semiconductor chips and a second semiconductor chip that are stacked sequentially on a board. The semiconductor packages may also include a wiring layer on the memory chips and the wiring layer may include redistribution patterns and redistribution pads. Each of the memory chips may include a data pad. The data pads of the first semiconductor chips may be electrically connected to the board via the second semiconductor chip, some of redistribution patterns, and some of redistribution pads.
Abstract:
An epoxy resin composition having an epoxy resin, a curing agent, and inorganic filler as main components is provided. The epoxy resin includes an epoxy resin of Chemical Formula. Accordingly, the thermal conductivity of the epoxy resin composition can be increased because the epoxy resin has a mesogen structure that facilitates crystallizability. In addition, a high radiant heat board can be provided by using the above-mentioned epoxy resin as an insulating material for a printed circuit board.
Abstract:
A noninvasive patient-specific method is provided to aid in the analysis, diagnosis, prediction or treatment of hemodynamics of the cardiovascular system of a patient. Coronary blood flow and pressure can be predicted using a 3-D patient image-based model that is implicitly coupled with a model of at least a portion of the remaining cardiovascular system. The 3-D patient image-based model includes at least a portion of the thoracic aorta and epicardial coronaries of the patient. The shape of one or more velocity profiles at the interface of the models is enforced to control complex flow features of recirculating or retrograde flow thereby minimizing model instabilities and resulting in patient-specific predictions of coronary flow rate and pressure. The invention allows for patient-specific predictions of the effect of different or varying physiological states and hemodynamic benefits of coronary medical interventions, percutaneous coronary interventions and surgical therapies.