Abstract:
An electronic device is moved into a first position with respect to probes for making electrical contact with the device. The electronic device is then moved into a second position in which the electronic device is pressed against the probes, compressing the probes. The movement into the second position includes two components. One component of the movement tends to press the electronic device against the probes, compressing the probes and inducing a stress in the probes. The second movement tends to reduce that stress. Test data are then communicated to and from the electronic device through the probes.
Abstract:
A method of designing and manufacturing a probe card assembly includes prefabricating one or more elements of the probe card assembly to one or more predefined designs. Thereafter, design data regarding a newly designed semiconductor device is received along with data describing the tester and testing algorithms to be used to test the semiconductor device. Using the received data, one or more of the prefabricated elements is selected. Again using the received data, one or more of the selected prefabricated elements is customized. The probe card assembly is then built using the selected and customized elements.
Abstract:
A method and system for designing a probe card from data provided by prospective customers via the Internet is provided. Design specifications are entered into the system by prospective customers and compiled into a database. The collective feasibility of each set of design specifications is determined by an automated computer system and communicated to the prospective customer. If feasible, additional software enables prospective customers to create verification packages according to their respective design specifications. These verification packages further consist of drawing files visually describing the final design and verification files confirming wafer bonding pad data. Verification packages are reviewed and forwarded to an applications engineer after customer approval. An interactive simulation of probe card performance is also provided. Data on probe card performance is incorporated into an overall modeling exercise, which includes not only the probe card, but data on the device(s) under test and wafer, as well as data on automated test equipment.
Abstract:
Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined on a sacrificial substrate. The openings may be within the surface of the substrate, or in one or more layers deposited on the surface of the sacrificial substrate. Each spring contact element has a base end portion, a contact end portion, and a central body portion. The contact end portion is offset in the z-axis (at a different height) than the central body portion. The base end portion is preferably offset in an opposite direction along the z-axis from the central body portion. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the sacrificial substrate. The spring contact elements are suitably mounted by their base end portions to corresponding terminals on an electronic component, such as a space transformer or a semiconductor device, whereupon the sacrificial substrate is removed so that the contact ends of the spring contact elements extend above the surface of the electronic component. In an exemplary use, the spring contact elements are thereby disposed on a space transformer component of a probe card assembly so that their contact ends effect pressure connections to corresponding terminals on another electronic component, for the purpose of probing the electronic component.
Abstract:
The present invention discloses a method and system compensating for thermally induced motion of probe cards used in testing die on a wafer. A probe card incorporating temperature control devices to maintain a uniform temperature throughout the thickness of the probe card is disclosed. A probe card incorporating bi-material stiffening elements which respond to changes in temperature in such a way as to counteract thermally induced motion of the probe card is disclosed including rolling elements, slots and lubrication. Various means for allowing radial expansion of a probe card to prevent thermally induced motion of the probe card are also disclosed. A method for detecting thermally induced movement of the probe card and moving the wafer to compensate is also disclosed.
Abstract:
In a probe card assembly, a series of probe elements can be arrayed on a silicon space transformer. The silicon space transformer can be fabricated with an array of primary contacts in a very tight pitch, comparable to the pitch of a semiconductor device. One preferred primary contact is a resilient spring contact. Conductive elements in the space transformer are routed to second contacts at a more relaxed pitch. In one preferred embodiment, the second contacts are suitable for directly attaching a ribbon cable, which in turn can be connected to provide selective connection to each primary contact. The silicon space transformer is mounted in a fixture that provides for resilient connection to a wafer or device to be tested. This fixture can be adjusted to planarize the primary contacts with the plane of a support probe card board.
Abstract:
An interconnection element and a method of forming an interconnection element. In one embodiment, the interconnection element includes a first structure and a second structure coupled to the first structure. The second structure coupled with the first material has a spring constant greater than the spring constant of the first structure alone. In one embodiment, the interconnection element is adapted to be coupled to an electronic component tracked as a conductive path from the electronic component. In one embodiment, the method includes forming a first (interconnection) structure coupled to a substrate to define a shape suitable as an interconnection in an integrated circuit environment and then coupling, such as by coating, a second (interconnection) structure to the first (interconnection) structure to form an interconnection element. Collectively, the first (interconnection) structure and the second (interconnection) structure have a spring constant greater than a spring constant of the first (interconnection) structure.
Abstract:
A method of making a microelectronic spring contact array comprises forming a plurality of spring contacts on a sacrificial substrate and then releasing the spring contacts from the sacrificial substrate. Each of the spring contacts has an elongated beam having a base end. The method of making the array includes attaching the spring contacts at their base ends to a base substrate after they have been released entirely from the sacrificial substrate, so that each contact extends from the base substrate to a distal end of its beams. The distal ends are aligned with a predetermined array of tip positions. In an embodiment of the invention, the spring contacts are formed by patterning contours of the spring contacts in a sacrificial layer on the sacrificial substrate. The walls of patterned recesses in the sacrificial layer define side profiles of the spring contacts, and a conductive material is deposited in the recesses to form the elongated beams of the spring contacts.
Abstract:
The present invention discloses a method and system compensating for thermally induced motion of probe cards used in testing die on a wafer. A probe card incorporating temperature control devices to maintain a uniform temperature throughout the thickness of the probe card is disclosed. A probe card incorporating bi-material stiffening elements which respond to changes in temperature in such a way as to counteract thermally induced motion of the probe card is disclosed including rolling elements, slots and lubrication. Various means for allowing radial expansion of a probe card to prevent thermally induced motion of the probe card are also disclosed. A method for detecting thermally induced movement of the probe card and moving the wafer to compensate is also disclosed.
Abstract:
A probe card is provided for probing a semiconductor wafer with raised contact elements. In particular, the present invention is useful with resilient contact elements, such as springs. A probe card is designed to have terminals to mate with the contact elements on the wafer. In a preferred embodiment, the terminals are posts. In a preferred embodiment the terminals include a contact material suitable for repeated contacts. In one particularly preferred embodiment, a space transformer is prepared with contact posts on one side and terminals on the opposing side. An interposer with spring contacts connects a contact on the opposing side of the space transformer to a corresponding terminal on a probe card, which terminal is in turn connected to a terminal which is connectable to a test device such as a conventional tester.