Abstract:
The disclosed board fabrication techniques and design features enable the construction of a reliable, high-layer-count, and economical backplane for routers and the like that require a large number of signaling paths across the backplane at speeds of 2.5 Gbps or greater, as well as distribution of significant amounts of power to router components. The disclosed techniques and features allow relatively thick (e.g., three- or four-ounce copper) power distribution planes to be combined with large numbers of high-speed signaling layers in a common backplane. Using traditional techniques, such a construction would not be possible because of the number of layers required and the thickness of the power distribution layers. The disclosed embodiments use novel layer arrangements, material selection, processing techniques, and panel features to produce the desired high-speed layers and low-noise high-power distribution layers in a single mechanically stable board.
Abstract:
A Quadrax to Twinax conversion apparatus includes stacked trace layers of transmission line with a ground plane between the trace layers. Embodiments include trace layers of stripline or microstrip. Orthogonal plated through holes include a diagonal pair of through holes in electrical contact with traces on one of the trace layers and another diagonal pair of through holes in electrical contact with another trace layer. Contact pins extend through these orthogonal plated through holes with one pair of pins making electrical contact with one trace layer and the other pair of pins making electrical contact with another trace layer. The conversion apparatus electrically connects Twinax cables to respectively different trace layers without crossing over or disturbing the relative positions of the Quadrax diagonal pairs for very efficient high-speed data transfer from four wire Quadrax to two wire Twinax cables.
Abstract:
According to the invention, a microperforation (PMP) process step is combined with the lamination process. To this end, a dielectric layer are and a prefabricated product are placed between a support and a perforation die. The prefabricated product is partially covered by a conducting layer forming structures to be contacted by microvias. Pressure is applied on the perforation die, perforation tips of the perforation die forming microvias for contacting the structures. A surface of the dielectric layer or the prefabricated product is configured or coated to in a manner that the prefabricated product and the dielectric layer stick to each other after the pressure has been applied.
Abstract:
In accordance with this invention a porcelain coated metal board is provided which has flat surfaces and further has electrical connections between the face and reverse surfaces of the board. In accordance with a further aspect of this invention the boards of this invention are obtained by a method in which the connecting pins are sealed in a spaced relationship in apertures in the metal core of the board and insulated from the core prior to the application of the porcelain to the surfaces of the core.