Abstract:
A method of manufacturing a wiring board including forming a first wiring board, the forming of the first board including forming a substrate, forming a first insulation layer on a surface of the substrate and a second insulating layer on the opposite surface of the substrate, forming a via in one of the layers, and cutting the first layer in a first area and cutting the second layer in a second area offset from the first area to form a first substrate laminated to a second substrate with the substrate interposed therebetween, the second substrate having a smaller mounting area than that of the first substrate such that the first substrate extends beyond edge of the second substrate, connecting a pliable member to the substrate, and connecting the member to a second wiring board to connect the first and second boards. One or more insulation layers are a non-pliable layer.
Abstract:
A method of manufacturing a wiring board including forming a base substrate, forming a first insulation layer on a first surface of the base substrate and a second insulating layer on a second surface of the substrate opposing the first surface, forming an IVH (Interstitial Via Hole) that penetrates the base substrate, and cutting the first insulating layer in a first area and cutting the second insulating layer in a second area offset from said first area to form a first substrate laminated to a second substrate with the base layer interposed therebetween, the second substrate having a smaller mounting area than that of the first substrate such that the first substrate extends beyond an edge of the second substrate.
Abstract:
A wiring board and method of forming the wiring board. The wiring board includes a first substrate, and a second substrate having a smaller mounting area than a mounting area of the first substrate. A base substrate is laminated between the first substrate and the second substrate such that the first substrate extends beyond an edge of the second substrate, and at least one via formed in at least one of the first substrate or the second substrate. A thickness of a portion of the base substrate that is sandwiched between the first substrate and the second substrate is greater than a thickness of a portion of the base substrate that is not sandwiched between the first substrate and the second substrate.
Abstract:
A flex-rigid wiring board includes an insulative substrate, a flexible wiring board positioned beside the insulative substrate, and an insulation layer positioned over the insulative substrate and the flexible wiring board and exposing at least a portion of the flexible wiring board. The flexible wiring board has a tapered portion which is made thinner toward the insulative substrate at an end portion of the flexible wiring board positioned beside the insulative substrate.
Abstract:
A flex-rigid wiring board includes a flexible board including a flexible substrate and a conductor pattern formed over the flexible substrate, a non-flexible substrate disposed adjacent to the flexible board, an insulating layer including an inorganic material and covering the flexible board and the non-flexible substrate, the insulating layer exposing at least one portion of the flexible board, a conductor pattern formed on the insulating layer, and a plating layer connecting the conductor pattern of the flexible board and the conductor pattern on the insulating layer.
Abstract:
In a method of manufacturing a multilayer printed circuit board, a first insulating resin base material is formed. A resin surface of a second insulating resin base material formed by attaching copper foil on a surface of a resin-insulating layer is unified with the first insulating resin base material. A conductor circuit is formed on the second insulating resin base material and a via hole electrically connecting to the conductor circuit. A concave portion is formed from a resin-insulating layer surface in a conductor circuit non-formation area of the first insulating resin base material. A semiconductor element is housed within the concave portion and adhered with an adhesive. A resin-insulating layer is formed by coating the semiconductor element and a via hole.
Abstract:
A printed wiring board includes an insulation layer having a surface, electrodes embedded in the insulation layer, a resistor formed on the surface of the insulation layer and electrically connected to the electrodes, and an external connection conductive pattern formed over the surface of the insulation layer and electrically connected to one or more electrodes. The insulation layer and the electrodes form a component-mounting surface on the surface of the insulation layer, the component-mounting surface is substantially leveled with the surface of the insulation layer and includes a resistor forming region on which the resistor is formed, and the external connection conductive pattern is separated by a space from the resistor.
Abstract:
An electronic parts substrate includes a base substrate, a plurality of insulating resin layers provided on the base substrate, at least one conductive circuit, and at least one filled via provided in the plurality of insulating resin layers. The at least one conductive circuit is sandwiched between the plurality of insulating resin layers and/or between the base substrate and the plurality of insulating resin layers. At least one opening is formed in at least one of the plurality of insulating resin layers.
Abstract:
A method of manufacturing a flex-rigid wiring board including disposing a flexible board comprising a flexible substrate and a conductor pattern formed over the flexible substrate and a non-flexible substrate adjacent to each other, covering a boundary between the flexible board and the non-flexible substrate with an insulating layer comprising an inorganic material, providing a conductor pattern on the insulating layer, forming a via hole opening which passes through the insulating layer and reaches the conductor pattern of the flexible board, and plating the via hole opening to form a via connecting the conductor pattern of the flexible board and the conductor pattern on the insulating layer.
Abstract:
This invention provides a multilayer printed wiring board in which electric connectivity and functionality are obtained by improving reliability and particularly, reliability to the drop test can be improved. No corrosion resistant layer is formed on a solder pad 60B on which a component is to be mounted so as to obtain flexibility. Thus, if an impact is received from outside when a related product is dropped, the impact can be buffered so as to protect any mounted component from being removed. On the other hand, land 60A in which the corrosion resistant layer is formed is unlikely to occur contact failure even if a carbon pillar constituting an operation key makes repeated contacts.