Abstract:
A metal interconnect structure provides high adhesive strength between copper atoms in a copper-containing structure and a self-aligned copper encapsulation layer, which is selectively deposited only on exposed copper surfaces. A lower level metal interconnect structure comprises a first dielectric material layer and a copper-containing structure embedded in a lower metallic liner. After a planarization process that forms the copper-containing structure, a material that forms Cu—S bonds with exposed surfaces of the copper-containing structure is applied to the surface of the copper-containing structure. The material is selectively deposited only on exposed Cu surfaces, thereby forming a self-aligned copper encapsulation layer, and provides a high adhesion strength to the copper surface underneath. A dielectric cap layer and an upper level metal interconnect structure can be subsequently formed on the copper encapsulation layer.
Abstract:
A method for forming an interconnect structure for a semiconductor device includes defining a via in a passivation layer so as expose a top metal layer in the semiconductor device. A seed layer is formed over the passivation layer, sidewalls of the via, and the top metal layer. A barrier layer is formed over an exposed portion of the seed layer, the exposed portion defined by a first patterned opening. The semiconductor device is annealed so as to cause atoms from the barrier layer to diffuse into the seed layer thereunderneath, wherein the annealing causes diffused regions of the seed layer to have an altered electrical resistivity and electrode potential with respect to undiffused regions of the seed layer.
Abstract:
Disclosed is a method of forming an integrated circuit structure that forms lead-free connectors on a device, surrounds the lead-free connectors with a compressible film, connects the device to a carrier (the lead-free connectors electrically connect the device to the carrier), and fills the gaps between the carrier and the device with an insulating underfill.
Abstract:
Disclosed is a method of forming an integrated circuit structure that forms lead-free connectors on a device, surrounds the lead-free connectors with a compressible film, connects the device to a carrier (the lead-free connectors electrically connect the device to the carrier), and fills the gaps between the carrier and the device with an insulating underfill.
Abstract:
A method for forming an interconnect structure for a semiconductor device includes defining a via in a passivation layer so as expose a top metal layer in the semiconductor device. A seed layer is formed over the passivation layer, sidewalls of the via, and the top metal layer. A barrier layer is formed over an exposed portion of the seed layer, the exposed portion defined by a first patterned opening. The semiconductor device is annealed so as to cause atoms from the barrier layer to diffuse into the seed layer thereunderneath, wherein the annealing causes diffused regions of the seed layer to have an altered electrical resistivity and electrode potential with respect to undiffused regions of the seed layer.
Abstract:
A method and structure for a fuse structure comprises an insulator layer, a plurality of fuse electrodes extending through the insulator layer to an underlying wiring layer, an electroplated fuse element connected to the electrodes, and an interface wall. The fuse element is positioned external to the insulator, with a gap juxtaposed between the insulator and the fuse element. The interface wall further comprises a first side wall, a second side wall, and an inner wall, wherein the inner wall is disposed within the gap. The fuse electrodes are diametrically opposed to one another, and the fuse element is perpendicularly disposed above the fuse electrodes. The fuse element is either electroplatted, electroless plated, or is an ultra thin fuse.
Abstract:
A process for electroplating metallic features of different density on a surface of a substrate comprises providing an electroplating bath having an anode, immersing the substrate into the electroplating bath, spaced from the anode, the substrate comprising a cathode. Positioned in the electroplating bath between the substrate and the anode, and adjacent to and separated from the substrate surface is a second cathode that includes a wire mesh screening portion having openings of different sizes conforming to the metallic features to be electroplated. The second cathode screening portion has openings of larger size adjacent areas of higher density of features to be electroplated and openings of smaller size adjacent areas of lower density of features to be electroplated. The process further includes impressing a current through the electroplating bath between the substrate and the anode, and between the second cathode and the anode, and electroplating the metallic features of different density onto the substrate.
Abstract:
The invention is directed to a method for removing copper oxide from a copper surface to provide a clean copper surface, wherein the method involves exposing the copper surface containing copper oxide thereon to an anhydrous vapor containing a carboxylic acid compound therein, wherein the anhydrous vapor is generated from an anhydrous organic solution containing the carboxylic acid and one or more solvents selected from hydrocarbon and ether solvents.
Abstract:
Methods of forming integrated circuit devices include forming an interlayer insulating layer having a trench therein, on a substrate and forming an electrical interconnect (e.g., Cu damascene interconnect) in the trench. An upper surface of the interlayer insulating layer is recessed to expose sidewalls of the electrical interconnect. An electrically insulating first capping pattern is formed on the recessed upper surface of the interlayer insulating layer and on the exposed sidewalls of the electrical interconnect, but is removed from an upper surface of the electrical interconnect. A metal diffusion barrier layer is formed on an upper surface of the electrical interconnect, however, the first capping pattern is used to block formation of the metal diffusion barrier layer on the sidewalls of the electrical interconnect. This metal diffusion barrier layer may be formed using an electroless plating technique.
Abstract:
Methods of forming integrated circuit devices include forming an interlayer insulating layer having a trench therein, on a substrate and forming an electrical interconnect (e.g., Cu damascene interconnect) in the trench. An upper surface of the interlayer insulating layer is recessed to expose sidewalls of the electrical interconnect. An electrically insulating first capping pattern is formed on the recessed upper surface of the interlayer insulating layer and on the exposed sidewalls of the electrical interconnect, but is removed from an upper surface of the electrical interconnect. A metal diffusion barrier layer is formed on an upper surface of the electrical interconnect, however, the first capping pattern is used to block formation of the metal diffusion barrier layer on the sidewalls of the electrical interconnect. This metal diffusion barrier layer may be formed using an electroless plating technique.