Abstract:
Interconnect assemblies and methods for forming and using them. In one example of the invention, an interconnect assembly comprises a substrate, a resilient contact element and a stop structure. The resilient contact element is disposed on the substrate and has at least a portion thereof which is capable of moving to a first position, which is defined by the stop structure, in which the resilient contact element is in mechanical and electrical contact with another contact element. In another example of the invention, a stop structure is disposed on a first substrate with a first contact element, and this stop structure defines a first position of a resilient contact element, disposed on a second substrate, in which the resilient contact element is in mechanical and electrical contact with the first contact element. Other aspects of the invention include methods of forming the stop structure and using the structure to perform testing of integrated circuits, including for example a semiconductor wafer of integrated circuits.
Abstract:
A base controller disposed in a test cassette receives test data for testing a plurality of electronic devices. The base controller wirelessly transmits the test data to a plurality of wireless test control chips, which write the test data to each of the electronic devices. The wireless test control chips then read response data generated by the electronic devices, and the wireless test control chips wirelessly transmit the response data to the base controller.
Abstract:
Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined in masking layers deposited on a surface of a substrate which may be an electronic component such as an active semiconductor device. Each spring contact element has a base end, a contact end, and a central body portion. The contact end is offset in the z-axis (at a different height) and in at least one of the x and y directions from the base end. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the substrate. The spring contact elements make temporary (i.e., pressure) or permanent (e.g., joined by soldering or brazing or with a conductive adhesive) connections with terminals of another electronic component to effect electrical connections therebetween. In an exemplary application, the spring contact elements are disposed on a semiconductor devices resident on a semiconductor wafer so that temporary connections can be made with the semiconductor devices to burn-in and/or test the semiconductor devices.
Abstract:
A probe card assembly can include an insert holder configured to hold a probe insert, which can include probes disposed in a particular configuration for probing a device to be tested. The probe card assembly can provide an electrical interface to a tester that can control testing of the device, and while attached to the probe card assembly, the insert holder can hold the probe insert such that the probe insert is electrically connected to electrical paths within the probe card assembly that are part of the interface to the tester. The insert holder can be detached from the probe card assembly. The probe insert of the probe card assembly can be replaced by detaching the insert holder, replacing the probe insert with a new probe insert, and then reattaching the insert holder to the probe card assembly. The probe insert and holder can be integrally formed and comprise a single structure that can be detached from a probe card assembly and replaced with a different probe insert and holder.
Abstract:
An electronic device is moved into a first position such that terminals of the electronic device are adjacent probes for making electrical contact with the terminals. The electronic device is then moved horizontally or diagonally such that the terminals contact the probes. Test data are then communicated to and from the electronic device through the probes.
Abstract:
A probe card apparatus is configured to have a desired overall amount of compliance. The compliance of the probes of the probe card apparatus is determined, and an additional, predetermined amount of compliance is designed into the probe card apparatus so that the sum of the additional compliance and the compliance of the probes total the overall desired compliance of the probe card apparatus.
Abstract:
An interconnection element and a-method of forming an interconnection element. In one embodiment, the interconnection element includes a first structure and a second structure coupled to the first structure. The second structure coupled with the first material has a spring constant greater than the spring constant of the first structure alone. In one embodiment, the interconnection element is adapted to be coupled to an electronic component tracked as a conductive path from the electronic component. In one embodiment, the method includes forming a first (interconnection) structure coupled to a substrate to define a shape suitable as an interconnection in an integrated circuit environment and then coupling, such as by coating, a second (interconnection) structure to the first (interconnection) structure to form an interconnection element. Collectively, the first (interconnection) structure and the second (interconnection) structure have a spring constant greater than a spring constant of the first (interconnection) structure.
Abstract:
An interconnection element of a spring (body) including a first resilient element with a first contact region and a second contact region and a first securing region and a second resilient element, with a third contact region and a second securing region. The second resilient element is coupled to the first resilient element through respective securing regions and positioned such that upon sufficient displacement of the first contact region toward the second resilient element, the second contact region will contact the third contact region. The interconnection, in one aspect, is of a size suitable for directly contacting a semiconductor device. A large substrate with a plurality of such interconnection elements can be used as a wafer-level contactor. The interconnection element, in another aspect, is of a size suitable for contacting a packaged semiconductor device, such as in an LGA package.
Abstract:
In a probe card assembly, a series of probe elements can be arrayed on a silicon space transformer. The silicon space transformer can be fabricated with an array of primary contacts in a very tight pitch, comparable to the pitch of a semiconductor device. One preferred primary contact is a resilient spring contact. Conductive elements in the space transformer are routed to second contacts at a more relaxed pitch. In one preferred embodiment, the second contacts are suitable for directly attaching a ribbon cable, which in turn can be connected to provide selective connection to each primary contact. The silicon space transformer is mounted in a fixture that provides for resilient connection to a wafer or device to be tested. This fixture can be adjusted to planarize the primary contacts with the plane of a support probe card board.
Abstract:
A method and system for compensating for thermally induced motion of probe cards used in testing die on a wafer are disclosed. A probe card incorporating temperature control devices to maintain a uniform temperature throughout the thickness of the probe card is disclosed. A probe card incorporating bi-material stiffening elements which respond to changes in temperature in such a way as to counteract thermally induced motion of the probe card is disclosed including rolling elements, slots and lubrication. Various means for allowing radial expansion of a probe card to prevent thermally induced movement of the probe card is disclosed. A method for detecting thermally induced movement of the probe card and moving the wafer to compensate is also disclosed.