Abstract:
A multilayer component and a mathod for producing a multilayer component are disclosed. In an embodiment the multilayer component includes a ceramic main element being a varistor ceramic and at least one metal structure, wherein the metal structure is cosintered, and wherein the main element is doped with a material of the metal structure in such a way that a diffusion of the material from the metal structure into the main element during a sintering operation is reduced.
Abstract:
A light-emitting diode device is specified, comprising at least one carrier and a light-emitting diode arranged thereon. The carrier comprises a plurality of polymer layers arranged one above another. At least one polymer layer has a cutout, in which an electrical component is embedded.
Abstract:
A film stack made from compacted green films and capable of being sintered to form a ceramic component with monolithic multi-layer structure is disclosed. The film stack includes a functional layer comprising a green film comprising a functional ceramic and a tension layer comprising a green film comprising a dielectric material. The tension layer is directly adjacent to the functional layer in the multi-layer structure. The multilayer structure also includes a first metallization plane and second metallization plane. The functional layer is between the first metallization plane and the second metallization plane.
Abstract:
A method for producing a multilayer carrier body is disclosed. A method for producing a multilayer carrier body. The method includes producing films by printing a first area of each film with a first paste and printing a second area of the film with a second paste. The method also includes stacking the films and laminating the films.
Abstract:
A component carrier includes a multi-layer carrier body having a substrate containing a structured functional. The substrate extends both laterally and also at least partially above and below the functional region. Alternatively, or in addition, the substrate extends both laterally and also completely above and/or below the functional region. Alternatively, or in addition, the substrate or a further region is arranged in or extends into the functional region.
Abstract:
A multilayer component and a mathod for producing a multilayer component are disclosed. In an embodiment the multilayer component includes a ceramic main element being a varistor ceramic and at least one metal structure, wherein the metal structure is cosintered, and wherein the main element is doped with a material of the metal structure in such a way that a diffusion of the material from the metal structure into the main element during a sintering operation is reduced.
Abstract:
An electrical component for embedding into a carrier comprises a ceramic main body, an electrically insulating passivation layer which is applied to the main body, and at least one inner electrode. In addition, the electrical component comprises an outer electrode which is connected to the inner electrode, wherein the outer electrode comprises a first electrode layer comprising a metal and a second electrode layer which is arranged on the latter and comprises copper.
Abstract:
A carrier for an LED is disclosed. In an embodiment, the carrier includes a main body, wherein the carrier has an upper side on which a first contact area for attaching an LED is arranged, and wherein a protective device for protecting the LED from electrostatic discharges is integrated in the main body.
Abstract:
A light-emitting diode device has a first carrier and at least one light-emitting diode chip, which is arranged on the first carrier. The first carrier has at least one first and one second carrier part, wherein the light-emitting diode chip rests only on the first carrier part. Furthermore, the first and second carrier parts each have a thermal conductivity. The thermal conductivity of the first carrier part is at least 1.5 times the thermal conductivity of the second carrier part. The first carrier part is surrounded laterally by the second carrier part.
Abstract:
An ESD protection component includes a ceramic material and a BGA or LGA termination. In addition, an ESD protection component includes a basic body with a lower side. The basic body includes a ceramic material. At least one floating inner electrode is located at a distance from the lower side of two to 100 ceramic grains. Also a component includes a carrier, on which an LED and an ESD protection component are arranged.