Abstract:
An example includes a die package including a microelectronic die having a lower die surface, an upper die surface parallel to the lower die surface, and a die side, the microelectronic die including an active region and an inactive region. The example optionally includes a heat spreader having a lower heat spreader surface, an upper heat spreader surface parallel to the lower heat spreader surface, and at least one heat spreader side, the heat spreader disposed on the upper surface of the microelectronic die in thermal communication with the inactive region of the die and electrically insulated from the active region. The example optionally includes an encapsulation material encapsulating the die side and the heat spreader side and lower heat spreader surface, the encapsulation material including a lower surface substantially parallel to the die lower surface and an upper surface substantially parallel to the die upper surface.
Abstract:
Integrated circuit (IC) packages having a through-via interposer with an embedded die, as well as related structures, devices, and methods, are disclosed herein. For example, in some embodiments, an IC package may include a through-via interposer with an embedded die, the through-via connections having front to back conductivity. In some embodiments, a die may be disposed on the back side of an IC package having a through-via interposer with an embedded die and may be electrically coupled to the embedded die. In some embodiments, a second IC package in a package-on-package (PoP) arrangement may be disposed on the back side of an IC package having a through-via interposer with an embedded die and may be electrically coupled to the conductive vias.
Abstract:
Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a substrate having a first surface and an opposing second surface, the second surface having a cavity; a first die at least partially nested in the cavity; an insulating material on the second surface of the substrate, the insulating material having a first surface and an opposing second surface, wherein the first surface of the insulating material is at the second surface of the substrate; a planar inductor embedded in the insulating material, the planar inductor including a thin film at least partially surrounding a conductive trace; and a second die, at the second surface of the insulating material, electrically coupled to the first die.
Abstract:
Embodiments of a system and methods for localized high density substrate routing are generally described herein. In one or more embodiments an apparatus includes a medium, first and second circuitry elements, an interconnect element, and a dielectric layer. The medium can include low density routing therein. The interconnect element can be embedded in the medium, and can include a plurality of electrically conductive members therein, the electrically conductive member can be electrically coupled to the first circuitry element and the second circuitry element. The interconnect element can include high density routing therein. The dielectric layer can be over the interconnect die, the dielectric layer including the first and second circuitry elements passing therethrough.
Abstract:
Embodiments of a system and methods for localized high density substrate routing are generally described herein. In one or more embodiments an apparatus includes a medium, first and second circuitry elements, an interconnect element, and a dielectric layer. The medium can include low density routing therein. The interconnect element can be embedded in the medium, and can include a plurality of electrically conductive members therein, the electrically conductive member can be electrically coupled to the first circuitry element and the second circuitry element. The interconnect element can include high density routing therein. The dielectric layer can be over the interconnect die, the dielectric layer including the first and second circuitry elements passing therethrough.
Abstract:
Embodiments of the present description relate to the field of fabricating microelectronic structures. The microelectronic structures may include a glass routing structure formed separately from a trace routing structure, wherein the glass routing structure is incorporated with the trace routing substrate, either in a laminated or embedded configuration. Also disclosed are embodiments of a microelectronic package including at least one microelectronic device disposed proximate to the glass routing structure of the microelectronic substrate and coupled with the microelectronic substrate by a plurality of interconnects. Further, disclosed are embodiments of a microelectronic structure including at least one microelectronic device embedded within a microelectronic encapsulant having a glass routing structure attached to the microelectronic encapsulant and a trace routing structure formed on the glass routing structure.
Abstract:
An electromagnetic interference shield is described for semiconductor chip packages. In some embodiments, a mold compound is formed over a semiconductor die, the die being over a front side redistribution layer on a side opposite the mold compound, the redistribution layer extending past the die and the mold compound extending around the die to contact the redistribution layer. A plurality of vias are formed in the mold compound vertically toward the redistribution layer, the vias being outside of the die, wherein the bottoms of the vias are over a ground layer of the front side redistribution layer. A continuous conductive shielding film is applied over the mold compound and into the vias, wherein the shielding film in some of the vias directly connects to the ground layer and wherein the shielding film in some of the vias does not directly connect to the ground layer, the redistribution layer connecting the metal film to an external ground so that the vias form a shield.
Abstract:
Embodiments of the present description relate to the field of fabricating microelectronic structures. The microelectronic structures may include a glass routing structure formed separately from a trace routing structure, wherein the glass routing structure is incorporated with the trace routing substrate, either in a laminated or embedded configuration. Also disclosed are embodiments of a microelectronic package including at least one microelectronic device disposed proximate to the glass routing structure of the microelectronic substrate and coupled with the microelectronic substrate by a plurality of interconnects. Further, disclosed are embodiments of a microelectronic structure including at least one microelectronic device embedded within a microelectronic encapsulant having a glass routing structure attached to the microelectronic encapsulant and a trace routing structure formed on the glass routing structure.
Abstract:
Methods of forming molded panel coreless package structures are described. Those methods and structures may include fabrication of embedded die packages using large panel format and use of molding to improve rigidity of the panel, as well as to embed the die in a non-sacrificial mold material. The methods and structures described include methods for manufacturing thin, coreless substrate architectures which possess low warpage.
Abstract:
A microelectronic package of the present description may comprises a first microelectronic device having at least one row of connection structures electrically connected thereto and a second microelectronic device having at least one row of connection structures electrically connected thereto, wherein the connection structures within the at least one first microelectronic device row are aligned with corresponding connection structures within the at least one second microelectronic device row in an x-direction. An interconnect comprising an interconnect substrate having a plurality of electrically isolated conductive traces extending in the x-direction on a first surface of the interconnect substrate may be attached to the at least one first microelectronic device connection structure row and the at least one second microelectronic device connection structure row, such that at least one interconnect conductive trace forms a connection between a first microelectronic device connection structure and its corresponding second microelectronic device connection structure.