Abstract:
A method includes performing a laser grooving to remove a dielectric material in a wafer to form a trench, wherein the trench extends from a top surface of the wafer to stop at an intermediate level between the top surface and a bottom surface of the wafer. The trench is in a scribe line between two neighboring chips in the wafer. A polymer is filled into the trench and then cured. After the step of curing the polymer, a die saw is performed to separate the two neighboring chips, wherein a kerf line of the die saw cuts through a portion of the polymer filled in the trench.
Abstract:
A method includes bonding a first and a second package component on a top surface of a third package component, and dispensing a polymer. The polymer includes a first portion in a space between the first and the third package components, a second portion in a space between the second and the third package components, and a third portion in a gap between the first and the second package components. A curing step is then performed on the polymer. After the curing step, the third portion of the polymer is sawed to form a trench between the first and the second package components.
Abstract:
A method includes forming a dielectric layer over a substrate, forming an interconnect structure over the dielectric layer, and bonding a die to the interconnect structure. The substrate is then removed, and the dielectric layer is patterned. Connectors are formed at a surface of the dielectric layer, wherein the connectors are electrically coupled to the die.
Abstract:
A die having a ledge along a sidewall, and a method of forming the die, is provided. A method of packaging the die is also provided. A substrate, such as a processed wafer, is diced by forming a first notch having a first width, and then forming a second notch within the first notch such that the second notch has a second width less than the first width. The second notch extends through the substrate, thereby dicing the substrate. The difference in widths between the first width and the second width results in a ledge along the sidewalls of the dice. The dice may be placed on a substrate, e.g., an interposer, and underfill placed between the dice and the substrate. The ledge prevents or reduces the distance the underfill is drawn up between adjacent dice. A molding compound may be formed over the substrate.
Abstract:
A method includes bonding a first and a second package component on a top surface of a third package component, and dispensing a polymer. The polymer includes a first portion in a space between the first and the third package components, a second portion in a space between the second and the third package components, and a third portion in a gap between the first and the second package components. A curing step is then performed on the polymer. After the curing step, the third portion of the polymer is sawed to form a trench between the first and the second package components.
Abstract:
A method for fabricating three dimensional integrated circuits comprises providing a wafer stack wherein a plurality of semiconductor dies are mounted on a first semiconductor die, forming a molding compound layer on the first side of the first semiconductor die, wherein the plurality of semiconductor dies are embedded in the molding compound layer. The method further comprises grinding a second side of the first semiconductor die until a plurality of through vias become exposed, attaching the wafer stack to a tape frame and dicing the wafer stack to separate the wafer stack into a plurality of individual packages.
Abstract:
A flux residue cleaning system includes first and second immersion chambers, first and second spray chambers, and a drying chamber. The first immersion chamber softens an outer region of a flux residue formed around microbumps interposed between a wafer and a die when the wafer is immersed in a first chemical. The first spray chamber removes the outer region of the flux residue when the wafer is impinged upon by a first chemical spray in order to expose an inner region of the flux residue. The second immersion chamber softens the inner region of the flux residue when the wafer is immersed in a second chemical. The second spray chamber removes the inner region of the flux residue when the wafer is impinged upon by a second chemical spray in order to clean the wafer to a predetermined standard. The drying chamber dries the wafer.
Abstract:
Semiconductor device packaging methods and structures thereof are disclosed. In one embodiment, a method of packaging semiconductor devices includes coupling a plurality of second dies to a top surface of a first die, and determining a distance between each of the plurality of second dies and the first die. The method also includes determining an amount of underfill material to dispose between the first die and each of the plurality of second dies based on the determined distance, and disposing the determined amount of the underfill material under each of the plurality of second dies.
Abstract:
Packaging methods and structures for semiconductor devices that utilize a novel die attach film are disclosed. In one embodiment, a method of packaging a semiconductor device includes providing a carrier wafer and forming a die attach film (DAF) that includes a polymer over the carrier wafer. A plurality of dies is attached to the DAF, and the plurality of dies is packaged. At least the carrier wafer is removed from the packaged dies, and the packaged dies are singulated.
Abstract:
A conductive bump structure of a semiconductor device comprises a substrate comprising a major surface and conductive bumps distributed over the major surface of the substrate. Each of a first subset of the conductive bumps comprises a regular body, and each of a second subset of the conductive bumps comprises a ring-shaped body.