Abstract:
A ceramic conversion element, a light-emitting device and a method for producing a ceramic conversion element are disclosed. In an embodiment a ceramic conversion element includes a central region with a structured top surface including a plurality of structure elements and a frame surrounding the central region, the frame having a planar top surface, wherein the central region and the frame are formed as one piece, and wherein the ceramic conversion element is configured to convert primary radiation into secondary radiation of a different wavelength range.
Abstract:
A device and a method for producing a device are disclosed. In an embodiment the device includes a carrier and a semiconductor body arranged in a vertical direction on the carrier. The carrier includes at least one metal layer for electrically contacting the semiconductor body, a non-metallic molding layer, at least one electrically insulating insulation layer, wherein the insulation layer is arranged in the vertical direction between the semiconductor body and the molding layer and internal anchoring structures, wherein at least two layers of the metal layer, the molding layer and the insulation layer are anchored to one another by the internal anchoring structures.
Abstract:
An optoelectronic component and a method for producing an optoelectronic component are disclosed. In an embodiment the optoelectronic component includes a semiconductor chip subdivided into a plurality of pixels, the pixels being arranged next to one another in a lateral direction and being configured to be activated individually and independently and a metallic connecting element having an upper side and an underside, the connecting element including a contiguous metallic connecting layer, which is completely passed through by a plurality of first metallic through-connections arranged next to one another in the lateral direction, wherein the first through-connections are electrically insulated and spaced from the connecting layer by insulating regions, wherein each first through-connection is unambiguously assigned to one pixel, is electrically-conductively connected to this pixel and forms a first electrical contact to this pixel, and wherein the semiconductor chip is connected by the connecting element to a carrier.
Abstract:
A method of producing a plurality of optoelectronic semiconductor chips includes a) providing a layer composite assembly having a principal plane which delimits the layer composite assembly in a vertical direction, and includes a semiconductor layer sequence having an active region that generates and/or detects radiation, wherein a plurality of recesses extending from the principal plane in a direction of the active region are formed in the layer composite assembly; b) forming a planarization layer on the principal plane such that the recesses are at least partly filled with material of the planarization layer; c) at least regionally removing material of the planarization layer to level the planarization layer; and d) completing the semiconductor chips, wherein for each semiconductor chip at least one semiconductor body emerges from the semiconductor layer sequence.
Abstract:
An optoelectronic semiconductor chip includes an interconnection layer with a first electrically conductive contact layer, a second electrically conductive contact layer and an insulation layer, which is formed of an electrically insulating material. Further, the optoelectronic semiconductor chip includes two optoelectronic semiconductor bodies, each of which include an active region that is intended to generate radiation. The insulation layer is arranged on a top of the second electrically conductive contact layer facing the optoelectronic semiconductor bodies. The first electrically conductive contact layer is arranged on a top of the insulation layer remote from the second electrically conductive contact layer. The optoelectronic semiconductor bodies are interconnected electrically in parallel by the interconnection layer.
Abstract:
A display device with a semiconductor layer sequence includes an active region provided for generating radiation and a plurality of pixels. The display device also includes a carrier. The active region is arranged between a first semiconductor layer and a second semiconductor layer. The semiconductor layer sequence includes at least one recess, which extends from a major face of the semiconductor layer sequence facing the carrier through the active region into the first semiconductor layer and is provided for electrical contacting of the first semiconductor layer. The carrier includes a number of switches, which are each provided for controlling at least one pixel.
Abstract:
An optoelectronic semiconductor component includes a semiconductor chip having a semiconductor layer sequence including an active region that generates radiation; a radiation exit surface running parallel to the active region; a mounting side surface that fixes the semiconductor component and runs obliquely or perpendicularly to the radiation exit surface and at which at least one contact area for external electrical contacting is accessible; a molded body molded onto the semiconductor chip in places and forming the mounting side surface at least in regions; and a contact track arranged on the molded body and electrically conductively connecting the semiconductor chip to the at least one contact area.
Abstract:
An optoelectronic component includes an optoelectronic semiconductor chip having a first surface on which a first electrical contact and a second electrical contact are arranged, wherein the first surface adjoins a molded body, a first pin and a second pin are embedded in the molded body and electrically conductively connect to the first contact and the second contact, and a protection diode is embedded in the molded body and electrically conductively connect to the first contact and the second contact.
Abstract:
A method of producing optoelectronic semiconductor components including providing a primary light source having a carrier and a semiconductor layer sequence mounted thereon that generates primary light (B), wherein the semiconductor layer sequence is structured into a plurality of pixels that can be driven electrically independently of each other, and the carrier includes a plurality of control units that drive the pixels, providing at least one conversion unit adapted to convert the primary light (B) into at least one secondary light (G, R), wherein the conversion unit is grown continuously from at least one semiconductor material, structuring the conversion unit, wherein portions of the semiconductor material are removed in accordance with the pixels, and applying the conversion unit to the semiconductor layer sequence so that the remaining semiconductor material is uniquely assigned to a portion of the pixels.
Abstract:
A multipixel LED component includes a plurality of emission zones; a plurality of conversion elements adapted to convert radiation emitted from the emission zones into radiation of another wavelength range; a controller including a plurality of current sources and a transmitter adapted for wireless data transmission; and two electrical contact structures through which the LED component is energized, wherein the controller mechanically fixedly connects to the emission zones, each of the current sources is assigned to one of the emission zones biuniquely, the transmitter receives signals to control the current sources, the current sources are controllable according to the signals, each current source operates the emission zone assigned to it, and the number of emission zones is greater than the number of contact structures.