Abstract:
A semiconductor substrate (1) is provided on a main surface (14) with an intermetal dielectric (4) including metal planes (5) and on an opposite rear surface (15) with an insulation layer (2) and an electrically conductive connection pad (7). An etch stop layer (6) is applied on the intermetal dielectric to prevent a removal of the intermetal dielectric above the metal planes during subsequent method steps. An opening (9) having a side wall (3) and a bottom (13) is formed from the main surface through the substrate above the connection pad. A side wall spacer (10) is formed on the side wall by a production and subsequent partial removal of a dielectric layer (11). The insulation layer is removed from the bottom to uncover an area of the connection pad. A metal layer is applied in the opening and is provided for an interconnect through the substrate.
Abstract:
A method for manufacturing an optical sensor is provided. The method comprises providing an optical sensor arrangement which comprises at least two optical sensor elements on a carrier, where the optical sensor arrangement comprises a light entrance surface at the side of the optical sensor elements facing away from the carrier. The method further comprises forming a trench between two optical sensor elements in a vertical direction which is perpendicular to the main plane of extension of the carrier, where the trench extends from the light entrance surface of the sensor arrangement at least to the carrier. Moreover, the method comprises coating the trench with an opaque material, forming electrical contacts for the at least two optical sensor elements on a back side of the carrier facing away from the optical sensor elements, and forming at least one optical sensor by dicing the optical sensor arrangement along the trench. Each optical sensor comprises an optical sensor element, and the light entrance surface is free of electrical contacts and at least partially free of the opaque material above the optical sensor elements. Furthermore, an optical sensor is provided.
Abstract:
The dicing method comprises the steps of providing a substrate (1) of semiconductor material, the substrate having a main surface (10), where integrated components (3) of chips (13) are arranged, and a rear surface (11) opposite the main surface, fastening a first handling wafer above the main surface, thinning the substrate at the rear surface, and forming trenches (20) penetrating the substrate and separating the chips by a single etching step after the substrate has been thinned.
Abstract:
An optical sensor arrangement, in particular an optical proximity sensor arrangement comprises a three-dimensional integrated circuit further comprising a first layer comprising a light-emitting device, a second layer comprising a light-detector and a driver circuit. The driver circuit is electrically connected to the light-emitting device and to the light-detector to control the operation of the light-emitting device and the light-detector. A mold layer comprising a first light-barrier between the light-emitting device and the light-detector configured to block light from being transmitted directly from the light-emitting device to the light-detector.
Abstract:
A relief structure is formed on a surface of a carrier provided for accommodating a wafer, which is fastened to the carrier by a removable adhesive contacting the carrier. The relief structure, which may be spatially confined to the centre of the carrier, reduces the strength of adhesion between the wafer and the carrier. If the adhesive is appropriately selected and maintains the connection between the wafer and the carrier at elevated temperatures, further process steps can be performed at temperatures of typically 300° C. or more. The subsequent mechanical separation of the adhesive joint is facilitated by the relief structure on the carrier.
Abstract:
A 3D-Integrated optical sensor comprises a semiconductor substrate, an integrated circuit, a wiring, a filter layer, a transparent spacer layer, and an on-chip diffuser. The semiconductor substrate has a main surface. The integrated circuit comprises at least one light sensitive area and is arranged in the substrate at or near the main surface. The wiring provides an electrical connection to the integrated circuit and is connected to the integrated circuit. The wiring is arranged on or in the semiconductor substrate. The filter layer has a direction dependent transmission characteristic and is arranged on the integrated circuit. In fact, the filter layer at least covers the light sensitive area. The transparent spacer layer is arranged on the main surface and, at least partly, encloses the filter layer. A spacer thickness is arranged to limit a spectral shift of the filter layer. The on-chip diffuser is arranged on the transparent spacer layer.
Abstract:
A semiconductor substrate is provided with an annular cavity extending from a front side of the substrate to an opposite rear side. A metallization is applied in the annular cavity, thereby forming a through-substrate via and leaving an opening of the annular cavity at the front side. A solder ball is placed above the opening and a reflow of the solder ball is effected, thereby forming a void of the through-substrate via, the void being covered by the solder ball.
Abstract:
The semiconductor device comprises a semiconductor substrate (10) with a metallization (111) having an upper terminal layer (22) located at a front side (20) of the substrate. The metallization forms a through-substrate via (23) from the upper terminal layer to a rear terminal layer (13) located opposite to the front side at a rear side (21) of the substrate. The through-substrate via comprises an annular cavity (18) and a void (101), which may be filled with air or another gas. A solder ball (100) closes the void without completely filling it. A variety of interconnections for three-dimensional integration is offered by this scheme.
Abstract:
A device wafer having a main surface including an edge region and a carrier having a further main surface including an annular surface region corresponding to the edge region of the device wafer are provided. An adhesive is applied in the edge region and/or in the annular surface region, but not on the remaining areas of the main surfaces. The device wafer is fastened to the carrier by the adhesive. The main surface and the further main surface are brought into contact with one another when the device wafer is fastened to the carrier, while the main surface and the further main surface are fastened to one another only in the edge region. The device wafer is removed from the carrier after further process steps, which may include the formation of through-wafer vias in the device wafer.
Abstract:
The interposer-chip-arrangement comprises an interposer (1), metal layers arranged above a main surface (10), a further metal layer arranged above a further main surface (11) opposite the main surface, an electrically conductive interconnection (7) through the interposer, the interconnection connecting one of the metal layers and the further metal layer, a chip (12) arranged at the main surface or at the further main surface, the chip having a contact pad (15), which is electrically conductively connected with the interconnection, a dielectric layer (2) arranged above the main surface with the metal layers embedded in the dielectric layer, a further dielectric layer (3) arranged above the further main surface with the further metal layer embedded in the further dielectric layer, and an integrated circuit (25) in the interposer, the integrated circuit being connected with at least one of the metal layers (5).