Abstract:
An embodiment of the invention provides a chip package which includes: a carrier substrate; a semiconductor substrate having an upper surface and a lower surface, disposed overlying the carrier substrate; a device region or sensing region located on the upper surface of the semiconductor substrate; a conducting pad located on the upper surface of the semiconductor substrate; a conducting layer electrically connected to the conducting pad and extending from the upper surface of the semiconductor substrate to a sidewall of the semiconductor substrate; and an insulating layer located between the conducting layer and the semiconductor substrate.
Abstract:
An embodiment of the invention provides a chip package which includes: a semiconductor substrate having a first surface and a second surface; a sensor region formed in the semiconductor substrate; a light emitting device disposed on the second surface of the semiconductor substrate; at least one first conducting bump disposed on the first surface of the semiconductor substrate and electrically connected to the sensor region; at least one second conducting bump disposed on the first surface of the semiconductor substrate and electrically connected to the light emitting device; and an insulating layer located on the semiconductor substrate to electrically insulate the semiconductor substrate from the at least one first conducting bump and the at least one second conducting bump.
Abstract:
A chip package is provided. The chip package comprises a semiconductor chip, an isolation layer, a redistributing metal layer, and a bonding pad. The semiconductor chip has a first conducting pad disposed on a lower surface, and a first hole corresponding to the first conducting pad. The first hole and the isolation layer extend from an upper surface to the lower surface to expose the first conducting pad. The redistributing metal layer is disposed on the isolation layer and has a redistributing metal line corresponding to the first conducting pad, the redistributing metal line is connected to the first conducting pad through the opening. The bonding pad is disposed on the isolation layer and one side of the semiconductor chip, wherein the redistributing metal line extends to the bonding pad to electrically connect the first conducting pad to the bonding pad. A method thereof is also provided.
Abstract:
A chip package is disclosed. The package includes a carrier substrate, at least two semiconductor chips, a fill material layer, a protective layer, and a plurality of conductive bumps. The carrier substrate includes a grounding region. The semiconductor chips are disposed overlying the grounding region of the carrier substrate. Each semiconductor chip includes at least one signal pad and includes at least one grounding pad electrically connected to the grounding region. The fill material layer is formed overlying the carrier substrate and covers the semiconductor chips. The protective layer covers the fill material layer. The plurality of conductive bumps is disposed overlying the protective layer and is electrically connected to the semiconductor chips. A fabrication method of the chip package is also disclosed.
Abstract:
An embodiment of the present invention provides a manufacturing method of a chip package structure including: providing a first substrate having a plurality of predetermined scribe lines defined thereon, wherein the predetermined scribe lines define a plurality of device regions; bonding a second substrate to the first substrate, wherein a spacing layer is disposed therebetween and has a plurality of chip support rings located in the device regions respectively and a cutting support structure located on peripheries of the chip support rings, and the spacing layer has a gap pattern separating the cutting support structure from the chip support rings; and cutting the first substrate and the second substrate to form a plurality of chip packages. Another embodiment of the present invention provides a chip package structure.
Abstract:
A wiring structure for improving a crown-like defect and a fabrication method thereof are provided. The method includes the following steps. A substrate, on which a seed layer and a patterned photoresist layer with an opening are formed, is provided. A copper layer, having a bottom covering the seed layer, is formed in the opening. A barrier layer covering at least one top portion of the copper layer is formed on the copper layer. An oxidation potential of the barrier layer is greater than that of the copper layer. The patterned photoresist layer is removed to perform an etching process, wherein the copper layer and a portion of the seed layer exposed are etched to form a wiring layer. An immersion process is performed to form an anti-oxidation layer comprehensively on exposed surfaces of the barrier layer and the wiring layer.
Abstract:
According to an embodiment, a chip package is provided, which includes: a substrate having a first surface and a second surface; a device region formed in the substrate; a passivation layer formed overlying the first surface of the substrate; at least a polymer planarization layer formed overlying the passivation layer; a package substrate disposed overlying the first surface of the substrate; and a spacer layer disposed between the package substrate and the passivation layer, wherein the spacer layer and the package substrate surround a cavity overlying the substrate, wherein the polymer planar layer does not extends to an outer edge of the spacer layer.
Abstract:
An electronic device package is disclosed. The package includes at least one semiconductor chip having a first surface and a second surface opposite thereto, in which at least one redistribution layer is disposed on the first surface of the semiconductor chip and is electrically connected to at least one conductive pad structure. At least one abut portion is disposed on the redistribution layer and electrically contacting thereto. A passivation layer covers the first surface of the semiconductor chip and surrounds the abut portion. A substrate is attached onto the second surface of the semiconductor chip. A fabrication method of the electronic device package is also disclosed.
Abstract:
An electronic device package is disclosed. The package includes at least one semiconductor chip having a first surface and a second surface opposite thereto, in which at least one redistribution layer is disposed on the first surface of the semiconductor chip and is electrically connected to at least one conductive pad structure. At least one abut portion is disposed on the redistribution layer and electrically contacting thereto. A passivation layer covers the first surface of the semiconductor chip and surrounds the abut portion. A substrate is attached onto the second surface of the semiconductor chip. A fabrication method of the electronic device package is also disclosed.
Abstract:
A chip package is disclosed. The package includes a carrier substrate, at least two semiconductor chips, a fill material layer, a protective layer, and a plurality of conductive bumps. The carrier substrate includes a grounding region. The semiconductor chips are disposed overlying the grounding region of the carrier substrate. Each semiconductor chip includes at least one signal pad and includes at least one grounding pad electrically connected to the grounding region. The fill material layer is formed overlying the carrier substrate and covers the semiconductor chips. The protective layer covers the fill material layer. The plurality of conductive bumps is disposed overlying the protective layer and is electrically connected to the semiconductor chips. A fabrication method of the chip package is also disclosed.