摘要:
This invention describes a radiation-emitting semiconductor component based on GaN, whose semiconductor body is made up of a stack of different GaN semiconductor layers (1). The semiconductor body has a first principal surface (3) and a second principal surface (4), with the radiation produced being emitted through the first principal surface (3) and with a reflector (6) being produced on the second principal surface (4). The invention also describes a production method for a semiconductor component pursuant to the invention. An interlayer (9) is first applied to a substrate (8), and a plurality of GaN layers (1) that constitute the semiconductor body of the component are then applied to this. The substrate (8) and the interlayer (9) are then detached and a reflector (6) is produced on a principal surface of the semiconductor body.
摘要:
An optical semiconductor device with a multiple quantum well structure, in which well layers and barrier layers comprising various types of semiconductor layers are alternately layered, in which device well layers (6a) of a first composition based on a nitride semiconductor material with a first electron energy and barrier layers (6b) of a second composition of a nitride semiconductor material with electron energy which is higher in comparison with the first electron energy are provided, followed, seen in the direction of growth, by a radiation-active quantum well layer (6c), for which the essentially non-radiating well layers (6a) and the barrier layers (6b) arranged in front form a superlattice.
摘要:
A semiconductor material (5) is grown in the windows (4) of a patterned mask layer (3) on a substrate (1). The semiconductor material (5) grows together over the mask layer (3) with semiconductor material (5) from adjacent windows to form a largely planar surface (7), which is suitable for the further growth of a component layer sequence (9). Through the choice of a substrate (1) having a smaller thermal expansion coefficient than the semiconductor material (5), particularly strong tensile stresses occur in the semiconductor material (5) or the component layer sequence (9) during cooling, which stresses lead to cracking. Since the semiconductor material (5) that has grown together forms a so-called coalescence region (6), having a high density of imperfections in the crystal lattice, these thermally governed cracks (13) are more likely to occur in this region. If the semiconductor bodies are singulated along these regions, these regions high in defects can be removed during the singulation, and a semiconductor body of high crystal quality can be mass produced.
摘要:
An LED chip comprising an electrically conductive and radioparent substrate, in which the epitaxial layer sequence is provided on substantially the full area of its p-side with a reflective, bondable p-contact layer. The substrate is provided on its main surface facing away from the epitaxial layer sequence with a contact metallization that covers only a portion of said main surface, and the decoupling of light from the chip takes place via a bare region of the main surface of the substrate and via the chip sides. A further LED chip has epitaxial layers only. The p-type epitaxial layer is provided on substantially the full area of the main surface facing away from the n-conductive epitaxial layer with a reflective, bondable p-contact layer, and the n-conductive epitaxial layer is provided on its main surface facing away from the p-conductive epitaxial layer with an n-contact layer that covers only a portion of said main surface. The decoupling of light from the chip takes place via the bare region of the main surface of the n-conductive epitaxial layer and via the chip sides.
摘要:
An illumination module with at least one thin-film light emitting diode chip which is applied on a chip carrier having electrical connecting conductors and has a first and a second electrical connection side and also an epitaxially fabricated semiconductor layer sequence. The semiconductor layer sequence has an n-conducting semiconductor layer, a p-conducting semiconductor layer and an electromagnetic radiation generating region arranged between these two semiconductor layers and is arranged on a carrier. Moreover, it has a reflective layer at a main area facing toward the carrier, which reflective layer reflects at least one part of the electromagnetic radiation generated in the semiconductor layer sequence back into the latter. The semiconductor layer sequence has at least one semiconductor layer with at least one micropatterned, rough area. The coupling-out area of the thin-film light emitting diode chip is essentially defined by a main area remote from the reflective layer and is free of housing material such as potting or encapsulating material.
摘要:
A method for producing a semiconductor component, in particular a thin-film component, a semiconductor layer being separated from a substrate by irradiation with a laser beam having a plateaulike spatial beam profile. Furthermore, the semiconductor layer, prior to separation, is applied to a carrier with an adapted thermal expansion coefficient. The method is suitable in particular for semiconductor layers containing a nitride compound semiconductor.
摘要:
An ohmic contact structure having a metallization (14) arranged on a semiconductor material (10), a contact layer being formed in the semiconductor material (10), which contact layer has a first partial region adjoining the metallization (14) and a second partial region (18) arranged downstream of the first partial region. The contact layer is doped in such a way that the doping concentration (N2) in the first partial region (12) is greater than the doping concentration (N1) in the second partial region (18).
摘要:
A composite substrate has a carrier and a utility layer. The utility layer is attached to the carrier by means of a dielectric bonding layer and the carrier contains a radiation conversion material. Other embodiments relate to a semiconductor chip having such a composite substrate, a method for producing a composite substrate and a method for producing a semiconductor chip with a composite substrate.
摘要:
In a luminescence diode chip having a radiation exit area (1) and a contact structure (2, 3, 4) which is arranged on the radiation exit area (1) and comprises a bonding pad (4) and a plurality of contact webs (2, 3) which are provided for current expansion and are electrically conductively connected to the bonding pad (4), the bonding pad (4) is arranged in an edge region of the radiation exit area (1). The luminescence diode chip has reduced absorption of the emitted radiation (23) in the contact structure (2, 3, 4).
摘要:
A radiation-emitting semiconductor component has an improved radiation efficiency. The semiconductor component has a multilayer structure with an active layer for generating radiation within the multilayer structure and also a window having a first and a second main surface. The multi-layer structure adjoins the first main surface of the window. At least one recess, such as a trench or a pit, is formed in the window from the second main surface for the purpose of increasing the radiation efficiency. The recess preferably has a trapezoidal cross section tapering toward the first main surface and can be produced for example by sawing into the window.