Abstract:
An integrated circuit packaging system, and a method of manufacture therefor, including: electrical terminals; circuitry protective material around the electrical terminals and formed to have recessed pad volumes; routable circuitry on the top surface of the circuitry protective material; and an integrated circuit die electrically connected to the electrical terminals.
Abstract:
A semiconductor device has a base substrate with recesses formed in a first surface of the base substrate. A first conductive layer is formed over the first surface and into the recesses. A second conductive layer is formed over a second surface of the base substrate. A first semiconductor die is mounted to the base substrate with bumps partially disposed within the recesses over the first conductive layer. A second semiconductor die is mounted to the first semiconductor die. Bond wires are formed between the second semiconductor die and the first conductive layer over the first surface of the base substrate. An encapsulant is deposited over the first and second semiconductor die and base substrate. A portion of the base substrate is removed from the second surface between the second conductive layer down to the recesses to form electrically isolated base leads for the bumps and bond wires.
Abstract:
A semiconductor device has a substrate including a base and a plurality of conductive posts extending from the base. A semiconductor die is disposed on a surface of the base between the conductive posts. An interconnect structure is formed over the semiconductor die and conductive posts. An adhesive layer is disposed over the semiconductor die. A conductive layer is disposed over the adhesive layer. An encapsulant is deposited over the semiconductor die and around the conductive posts. One or more conductive posts are electrically isolated from the substrate. The conductive layer is a removable or sacrificial cap layer. The substrate includes a wafer-shape, panel, or singulated form. The semiconductor die is disposed below a height of the conductive posts. An interconnect structure is formed over the semiconductor die, encapsulant, and conductive posts.
Abstract:
A semiconductor device has conductive pillars formed over a carrier. A first semiconductor die is mounted over the carrier between the conductive pillars. An encapsulant is deposited over the first semiconductor die and carrier and around the conductive pillars. A recess is formed in a first surface of the encapsulant over the first semiconductor die. The recess has sloped or stepped sides. A first interconnect structure is formed over the first surface of the encapsulant. The first interconnect structure follows a contour of the recess in the encapsulant. The carrier is removed. A second interconnect structure is formed over a second surface of the encapsulant and first semiconductor die. The first and second interconnect structures are electrically connected to the conductive pillars. A second semiconductor die is mounted in the recess. A third semiconductor die is mounted over the recess and second semiconductor die.
Abstract:
A semiconductor device has a first thermally conductive layer formed over a first surface of a semiconductor die. A second surface of the semiconductor die is mounted to a sacrificial carrier. An encapsulant is deposited over the first thermally conductive layer and sacrificial carrier. The encapsulant is planarized to expose the first thermally conductive layer. A first insulating layer is formed over the second surface of the semiconductor die and a first surface of the encapsulant. A portion of the first insulating layer over the second surface of the semiconductor die is removed. A second thermally conductive layer is formed over the second surface of the semiconductor die within the removed portion of the first insulating layer. An electrically conductive layer is formed within the insulating layer around the second thermally conductive layer. A heat sink can be mounted over the first thermally conductive layer.
Abstract:
A semiconductor device has a plurality of bumps formed over a carrier. A semiconductor die is mounted to the carrier between the bumps. A penetrable film encapsulant layer having a base layer, first adhesive layer, and second adhesive layer is placed over the semiconductor die and bumps. The penetrable film encapsulant layer is pressed over the semiconductor die and bumps to embed the semiconductor die and bumps within the first and second adhesive layers. The first adhesive layer and second adhesive layer are separated to remove the base layer and first adhesive layer and leave the second adhesive layer around the semiconductor die and bumps. The bumps are exposed from the second adhesive layer. The carrier is removed. An interconnect structure is formed over the semiconductor die and second adhesive layer. A conductive layer is formed over the second adhesive layer electrically connected to the bumps.