Fan-out electronic device
    23.
    发明授权

    公开(公告)号:US11410875B2

    公开(公告)日:2022-08-09

    申请号:US16225875

    申请日:2018-12-19

    Abstract: An electronic device (100) includes a substrate (110) and an integrated circuit (120) provided on the substrate (110) having a surface facing away from the substrate (110). An insulating layer (150) extends over the substrate (110) and around the integrated circuit (120) to define an interface (154) between the insulating layer (150) and the integrated circuit (120). An electrically conductive via (130) is provided on the surface of the integrated circuit (120). An insulating material (140) extends over the via (130) and includes an opening (142) exposing a portion of the via (130). A repassivation member (162) extends over the insulating layer (150) and has a surface (164) aligned with the interface (154). An electrically conductive redistribution member (181) is electrically connected to the via (130) and extends over the repassivation member (162) into contact with the insulating layer (150).

    Stress buffer layer in embedded package

    公开(公告)号:US11183441B2

    公开(公告)日:2021-11-23

    申请号:US16808018

    申请日:2020-03-03

    Abstract: The disclosed principles provide a stress buffer layer between an IC die and heat spreader used to dissipate heat from the die. The stress buffer layer comprises distributed pairs of conductive pads and a corresponding set of conductive posts formed on the conductive pads. In one embodiment, the stress buffer layer may comprise conductive pads laterally distributed over non-electrically conducting surfaces of an embedded IC die to thermally conduct heat from the IC die. In addition, such a stress buffer layer may comprise conductive posts laterally distributed and formed directly on each of the conductive pads. Each of the conductive posts thermally conduct heat from respective conductive pads. In addition, each conductive post may have a lateral width less than a lateral width of its corresponding conductive pad. A heat spreader is then formed over the conductive posts which thermally conducts heat from the conductive posts through the heat spreader.

    Stress Buffer Layer in Embedded Package
    25.
    发明申请

    公开(公告)号:US20190385924A1

    公开(公告)日:2019-12-19

    申请号:US16008119

    申请日:2018-06-14

    Abstract: The disclosed principles provide a stress buffer layer between an IC die and heat spreader used to dissipate heat from the die. The stress buffer layer comprises distributed pairs of conductive pads and a corresponding set of conductive posts formed on the conductive pads. In one embodiment, the stress buffer layer may comprise conductive pads laterally distributed over non-electrically conducting surfaces of an embedded IC die to thermally conduct heat from the IC die. In addition, such a stress buffer layer may comprise conductive posts laterally distributed and formed directly on each of the conductive pads. Each of the conductive posts thermally conduct heat from respective conductive pads. In addition, each conductive post may have a lateral width less than a lateral width of its corresponding conductive pad. A heat spreader is then formed over the conductive posts which thermally conducts heat from the conductive posts through the heat spreader.

    HIGH RELIABILITY SENSOR
    27.
    发明申请

    公开(公告)号:US20250074765A1

    公开(公告)日:2025-03-06

    申请号:US18456585

    申请日:2023-08-28

    Abstract: An electronic device includes first and second semiconductor dies, the first semiconductor die having: a side extending in a first plane of orthogonal first and second directions; a sensor circuit along the side; and a conductive terminal extending outward from the side along an orthogonal third direction, and the second semiconductor die bonded to the first semiconductor die and having: a bottom side; a lateral side; and an insulation layer, the bottom side spaced apart from and facing the side of the first semiconductor die to form a protected chamber for the sensor circuit, the lateral side of the second semiconductor die spaced apart from the conductive terminal along the first direction, the insulation layer extending along the lateral side of the second semiconductor die, and the insulation layer spaced apart from and facing the conductive terminal along the first direction.

Patent Agency Ranking