Abstract:
Disclosed is a method for preparing a compound of Formula 1 wherein Q and Z are as defined in the disclosure comprising distilling water from a mixture comprising a compound of Formula 2, a compound of Formula 3, a base comprising at least one compound selected from the group consisting of alkaline earth metal hydroxides of Formula 4 wherein M is Ca, Sr or Ba, alkali metal carbonates of Formula 4a wherein M1 is Li, Na or K, 1,5-diazabicyclo[4.3.0]non-5-ene and 1,8-diazabicyclo[5.4.0]undec-7-ene, and an aprotic solvent capable of forming a low-boiling azeotrope with water. Also disclosed is a method for preparing a compound of Formula 2 comprising (1) forming a reaction mixture comprising a Grignard reagent derived from contacting a compound of Formula 5 wherein X is Cl, Br or I with magnesium metal or an alkylmagnesium halide in the presence of an ethereal solvent, and then (2) contacting the reaction mixture with a compound of Formula 6 wherein Y is OR11 or NR12R13, and R11, R12 and R13 are as defined in the disclosure. Further disclosed is a method for preparing a compound of Formula 7 wherein Q and Z are as defined in the disclosure, using a compound of Formula 1 characterized by preparing the compound of Formula 1 by the method disclosed above or using a compound of Formula 1 prepared by the method disclosed above.
Abstract:
A method for producing a multisubstituted biphenyl compound is represented by the following formula (2), including a step of coupling a substituted benzene compound represented by the following formula (1) in the presence of a solid catalyst with gold immobilized onto a support.
Abstract:
The present disclosure relates to compounds of the formula wherein R2 and A are certain substituents, Y is an ester group, a nitrile group or an amido group and Z is O, S or N+R2, and which compounds are, for example, useful as intermediates for pyrazole fungicides. The compounds of the present disclosure can be prepared by the reaction of a compound of formula R2—C(O)—CH2Y, with an orthoformate HC—(OR3)3 in the presence of a base, especially in the presence of an amine, e.g. triethylamine.
Abstract:
The invention relates to a method of producing an ethylenically unsaturated carboxylic acid or ester, preferably an α, β ethylenically unsaturated carboxylic acid or ester. The method includes contacting formaldehyde or a suitable source thereof with a carboxylic acid or ester in the presence of a catalyst and optionally in the presence of an alcohol. The catalyst comprises a nitrided metal oxide having at least two types of metal cations, M1 and M2, wherein M1 is selected from the metals of group 2, 3, 4, 13 (called also IIIA) or 14 (called also IVA) of the periodic table and M2 is selected from the metals of groups 5 or 15 (called also VA) of the periodic table. The invention extends to a catalyst system.
Abstract:
The present invention relates to an n-heterocyclic carbene (NHC) type palladium catalyst and its preparation method as well as applications. Its preparation process is as below: select glyoxal as the raw material to synthesize glyoxaldiimine in the presence of Lewis acid or Bronsted acid, and then react with paraformaldehyde to get the NHC type ligand. Use palladium(II) to react with the compound containing carbon-nitrogen double bonds to get palladium(II) cyclic dimer; make the palladium cyclic dimer and the NHC type ligand coordinated to get the NHC type palladium catalyst. The palladium catalyst with a brand new structure according to the present invention, boasts high activity and multi-purpose. In addition, it shows excellent reaction activity in a lot of catalytic-coupling reactions including Suzuki-Miyaura, Heck, Buchwald-Hartwig, Kumada-Tamao-Corriu, Sonogashira, Negishi and α-ketone arylation reactions, and some reactions even can be carried out with the presence of an extremely low concentration of catalyst, exhibiting favorable industrialization prospect.
Abstract:
The present invention provides organic molecules and methods thereof for reactions between organoboron reagents and double bonds, such as imines or carbonyls, to stereoselectively provide chiral products including amines and alcohols, entities useful for the preparation of biologically active molecules.
Abstract:
This invention describes processes to make products by cross metathesis of functionalized or non-functionalized olefins with poly-branched poly-olefins such as terpenes (e.g., farnesene(s), α-farnesene, β-farnesene, β-myrcene, etc.) and compositions made by such methods. More particularly, the present invention relates to methods of making (i) cross metathesis products by a cross metathesis reaction between at least one hydrovinylated olefinic substrate and at least one hydrovinylated cross metathesis substrate in the presence of at least one olefin metathesis catalyst; (ii) cross metathesis products by a cross metathesis reaction between at least one hydrovinylated olefinic substrate and at least one cross metathesis substrate in the presence of at least one olefin metathesis catalyst; and (iii) cross metathesis products by a cross metathesis reaction between at least one olefinic substrate and at least one hydrovinylated cross metathesis substrate in the presence of at least one olefin metathesis catalyst; as well as compositions made by such methods.
Abstract:
The present invention describes the use of soluble metal salts to reduce impurities and metathesis catalysts poisons from olefinic feedstocks to improve olefin metathesis efficiency. The soluble metal salts were added to the olefinic feedstocks to prevent peroxides and catalyst poisons from inhibiting the metathesis catalyst. The soluble metal salts remain in the olefinic feedstocks and are used without further purification in the olefin metathesis reactions. The key to this invention is the soluble metal salt compounds do not inhibit the olefin metathesis catalysts but unexpectedly increase olefin metathesis catalyst efficiency while prior art heterogeneous metal complexes sequester the olefin metathesis catalyst, preventing olefin metathesis.
Abstract:
The present invention is directed to novel macrocyclic compounds of formula (I) and their pharmaceutically acceptable salts, hydrates or solvates: wherein R1, R2, R3, R4, R5, R6, n1, m, p Z1, Z2, and Z3 are as describe in the specification. The invention also relates to compounds of formula (I) which are antagonists of the motilin receptor and are useful in the treatment of disorders associated with this receptor and with or with motility dysfunction.