Abstract:
According to various embodiments, a method for manufacturing a semiconductor device may include providing a semiconductor workpiece including a device region at a first side of the semiconductor workpiece, wherein a mechanical stability of the semiconductor workpiece is insufficient to resist at least one back end process without damage, and depositing at least one conductive layer over a second side of the semiconductor workpiece opposite the first side of the semiconductor workpiece, wherein the at least one conductive layer increases the mechanical stability of the semiconductor workpiece to be sufficient to resist the at least one back end process without damage.
Abstract:
An arrangement is provided. The arrangement may include: a die including at least one electronic component and a first terminal on a first side of the die and a second terminal on a second side of the die opposite the first side, wherein the first side being the main processing side of the die, and the die further including at least a third terminal on the second side; a first electrically conductive structure providing current flow from the third terminal on second side of the die to the first side through the die; a second electrically conductive structure on the first side of the die laterally coupling the second terminal with the first electrically conductive structure; and an encapsulation material disposed at least over the first side of the die covering the first terminal and the second electrically conductive structure.
Abstract:
Methods for manufacturing resonator structures and corresponding resonator structures are described. A first wafer including a first piezoelectric material is singulated and bonded to a second wafer.
Abstract:
In accordance with an embodiment, an RF module includes a bulk semiconductor substrate with at least one integrated RF component integrated in a first main surface region of the bulk semiconductor substrate; an insulator structure surrounding a side surface region of the bulk semiconductor substrate; a wiring layer stack including at least one structured metallization layer embedded into an insulation material, the wiring layer stack being arranged on the first main surface region of the bulk semiconductor substrate and a first main surface region of the insulator structure; and a carrier structure at a second main surface region of the insulator structure, wherein the carrier structure and the insulator structure include different materials.
Abstract:
In one embodiment of the present invention, an electronic device includes a first emitter/collector region and a second emitter/collector region disposed in a substrate. The first emitter/collector region has a first edge/tip, and the second emitter/collector region has a second edge/tip. A gap separates the first edge/tip from the second edge/tip. The first emitter/collector region, the second emitter/collector region, and the gap form a field emission device.
Abstract:
In one embodiment, an inductor has a substrate, a conductor disposed above the substrate and a seamless ferromagnetic material surrounding at least a first portion of the conductor.
Abstract:
A method for manufacturing a MEMS device is disclosed. Moreover a MEMS device and a module including a MEMS device are disclosed. An embodiment includes a method for manufacturing MEMS devices includes forming a MEMS stack on a first main surface of a substrate, forming a polymer layer on a second main surface of the substrate and forming a first opening in the polymer layer and the substrate such that the first opening abuts the MEMS stack.
Abstract:
In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes forming a sacrificial layer over a first surface of a workpiece having the first surface and an opposite second surface. A membrane is formed over the sacrificial layer. A through hole is etched through the workpiece from the second surface to expose a surface of the sacrificial layer. At least a portion of the sacrificial layer is removed from the second surface to form a cavity under the membrane. The cavity is aligned with the membrane.
Abstract:
In one embodiment, a method of forming a semiconductor device includes forming a first inductor coil within and/or over a substrate. The first inductor coil is formed adjacent a top side of the substrate. First trenches are formed within the substrate adjacent the first inductor coil. The first trenches are filled at least partially with a magnetic fill material. At least a first portion of the substrate underlying the first inductor coil is thinned. A backside magnetic layer is formed under the first portion of the substrate. The backside magnetic layer and the magnetic fill material form at least a part of a magnetic core region of the first inductor coil.
Abstract:
A semiconductor package includes a semiconductor chip, an inductor applied to the semiconductor chip. The inductor includes at least one winding. A space within the at least one winding is filled with a magnetic material.