Abstract:
Embodiments include package structures having integrated waveguides to enable high data rate communication between package components. For example, a package structure includes a package substrate having an integrated waveguide, and first and second integrated circuit chips mounted to the package substrate. The first integrated circuit chip is coupled to the integrated waveguide using a first transmission line to waveguide transition, and the second integrated circuit chip is coupled to the integrated waveguide using a second transmission line to waveguide transition. The first and second integrated circuit chips are configured to communicate by transmitting signals using the integrated waveguide within the package carrier.
Abstract:
Embodiments include package structures having integrated waveguides to enable high data rate communication between package components. For example, a package structure includes a package substrate having an integrated waveguide, and first and second integrated circuit chips mounted to the package substrate. The first integrated circuit chip is coupled to the integrated waveguide using a first transmission line to waveguide transition, and the second integrated circuit chip is coupled to the integrated waveguide using a second transmission line to waveguide transition. The first and second integrated circuit chips are configured to communicate by transmitting signals using the integrated waveguide within the package carrier.
Abstract:
Embodiments include package structures having integrated waveguides to enable high data rate communication between package components. For example, a package structure includes a package substrate having an integrated waveguide, and first and second integrated circuit chips mounted to the package substrate. The first integrated circuit chip is coupled to the integrated waveguide using a first transmission line to waveguide transition, and the second integrated circuit chip is coupled to the integrated waveguide using a second transmission line to waveguide transition. The first and second integrated circuit chips are configured to communicate by transmitting signals using the integrated waveguide within the package carrier.
Abstract:
A microsystem with an integrated energy source serves as a platform and ecosystem for a variety of microsystems for implanting into human tissue. The microsystem includes a flexible battery located in an enclosed void. The enclosed void is formed by joining a first dielectric element with a second dielectric element.
Abstract:
A interposer sandwich structure comprises a top interposer and a bottom interposer enclosing an integrated circuit electronic device that includes means for attaching the device to the bottom interposer, and an interconnection structure connecting the top interposer to the bottom interposer. The top interposer may also be directly connected to a chip carrier in addition to the bottom interposer. The structure provides shielding and protection of the device against Electrostatic Discharge (ESD), Electromagnetic Interference (EMI), and Electromagnetic Conductivity (EMC) in miniaturized 3D packaging.
Abstract:
A method of removing a handler wafer. There is provided a handler wafer and a semiconductor device wafer having a plurality of semiconductor devices, the semiconductor device wafer having an active surface side and an inactive surface side. An amorphous carbon layer is applied to a surface of the handler wafer. An adhesive layer is applied to at least one of the amorphous carbon layer of the handler wafer and the active surface side of the semiconductor device wafer. The handler wafer is joined to the semiconductor device wafer through the adhesive layer or layers. Laser radiation is applied to the handler wafer to cause heating of the amorphous carbon layer that in turn causes heating of the adhesive layer or layers. The plurality of semiconductor devices of the semiconductor device wafer are then separated from the handler wafer.
Abstract:
An interposer sandwich structure includes a top interposer and a bottom interposer enclosing an integrated circuit electronic device that includes an attachment for attaching the device to the bottom interposer, and an interconnection structure connecting the top interposer to the bottom interposer. The top interposer may also be directly connected to a chip carrier in addition to the bottom interposer. The structure provides shielding and protection of the device against Electrostatic Discharge (ESD), Electromagnetic Interference (EMI), and Electromagnetic Conductivity (EMC) in miniaturized 3D packaging.
Abstract:
A method, a structure, and a computer system for traumatic event detection. The exemplary embodiments may include collecting data using sensors worn by a user and identifying a traumatic event based on applying a model to the data, wherein the model correlates values of the data with traumatic events and traumatic brain injuries. The exemplary embodiments may further include identifying the traumatic brain injury resulting from the traumatic event.
Abstract:
One or more die stacks are disposed on a redistribution layer (RDL) to make an electronic package. The die stacks include a die and one or more Through Silicon Via (TSV) dies. Other components and/or layers, e.g. interposes layers, can be included in the structure. An epoxy layer disposed on the RDL top surface and surrounds and attached to all the TSV die sides and all the die sides. Testing circuitry is located in various locations in some embodiments. Locations including in the handler, die, TSV dies, interposes, etc. Testing methods are disclosed, Methods of making including “die first” and “die last” methods are also disclosed. Methods of making heterogenous integrated structure and the resulting structures are also disclosed, particularly for large scale, e.g. wafer and panel size, applications.
Abstract:
A sleeping mask includes a signal processor for processing sensor data, an infrared light source coupled to the signal processor and configured to emit infrared light toward an eyelid of a user, and an array of infrared sensors coupled to the signal processor and configured to receive infrared light reflected from the eyelid of the user.