Abstract:
In a microelectronic component having conductive vias (114) passing through a substrate (104) and protruding above the substrate, conductive features (120E.A, 120E.B) are provided above the substrate that wrap around the conductive vias' protrusions (114′) to form capacitors, electromagnetic shields, and possibly other elements. Other features and embodiments are also provided.
Abstract:
A microelectronic assembly includes a stack of microelectronic elements, e.g., semiconductor chips, each having a front surface defining a respective plane of a plurality of planes. A leadframe interconnect joined to a contact at a front surface of each chip may extend to a position beyond the edge surface of the respective microelectronic element. The chip stack is mounted to support element at an angle such that edge surfaces of the chips face a major surface of the support element that defines a second plane that is transverse to, i.e., not parallel to the plurality of parallel planes. The leadframe interconnects are electrically coupled at ends thereof to corresponding contacts at a surface of the support element.
Abstract:
Components and methods of making the same are disclosed herein. In one embodiment, a method of forming a component comprises forming metal anchoring elements at a first surface of a support element having first and second oppositely facing surfaces, the support element having a thickness extending in a first direction between the first and second surfaces, wherein each anchoring element has a downwardly facing overhang surface; and then forming posts having first ends proximate the first surface and second ends disposed above the respective first ends and above the first surface, wherein a laterally extending portion of each post contacts at least a first area of the overhang surface of the respective anchoring element and extends downwardly therefrom, and the overhang surface of the anchoring element resists axial and shear forces applied to the posts at positions above the anchoring elements.
Abstract:
Die (110) and/or undiced wafers and/or multichip modules (MCMs) are attached on top of an interposer (120) or some other structure (e.g. another integrated circuit) and are covered by an encapsulant (160). Then the interposer is thinned from below. Before encapsulation, a layer (410) more rigid than the encapsulant is formed on the interposer around the die to reduce or eliminate interposer dishing between the die when the interposer is thinned by a mechanical process (e.g. CMP). Other features are also provided.
Abstract:
Die (110) are attached to an interposer (420), and the interposer/die assembly is placed into a lid cavity (510). The lid (210) is attached to the top of the assembly, possibly to the encapsulant (474) at the top. The lid's legs (520) surround the cavity and extend down below the top surface of the interposer's substrate (420S), possibly to the level of the bottom surface of the substrate or lower. The legs (520) may or may not be attached to the interposer/die assembly. In fabrication, the interposer wafer (420SW) has trenches (478) which receive the lid's legs during the lid placement. The interposer wafer is later thinned to remove the interposer wafer portion below the legs and to dice the interposer wafer. The thinning process also exposes, on the bottom, conductive vias (450) passing through the interposer substrate. Other features are also provided.
Abstract:
A microelectronic assembly includes a dielectric element having bumps projecting from a first surface thereof, the bumps having end surfaces flush with a planarized encapsulation. A circuit structure having a thickness less than or equal to 10 microns, formed by depositing two or more dielectric layers and conductive layers on the respective dielectric layers, has electrically conductive features thereon which electrically contact the bumps. The circuit structure can be formed separately on a carrier and then joined with the bumps on the dielectric element, or the circuit structure can be formed by a build up process on the planarized surface of the encapsulation and the planarized surfaces of the bumps.
Abstract:
Die (110) and/or undiced wafers and/or multichip modules (MCMs) are attached on top of an interposer (120) or some other structure (e.g. another integrated circuit) and are covered by an encapsulant (160). Then the interposer is thinned from below. Before encapsulation, a layer (410) more rigid than the encapsulant is formed on the interposer around the die to reduce or eliminate interposer dishing between the die when the interposer is thinned by a mechanical process (e.g. CMP). Other features are also provided.
Abstract:
Two microelectronic components (110, 120), e.g. a die and an interposer, are bonded to each other. One of the components' contact pads (110C) include metal, and the other component has silicon (410) which reacts with the metal to form metal silicide (504). Then a hole (510) is made through one of the components to reach the metal silicide and possibly even the unreacted metal (110C) of the other component. The hole is filled with a conductor (130), possibly metal, to provide a conductive via that can be electrically coupled to contact pads (120C.B) attachable to other circuit elements or microelectronic components, e.g. to a printed circuit board.
Abstract:
Inverted optical device. In accordance with an embodiment of the present invention, a plurality of piggyback substrates are attached to a carrier wafer. The plurality of piggyback substrates are dissimilar in composition to the carrier wafer. The plurality of piggyback substrates are processed, while attached to the carrier wafer, to produce a plurality of integrated circuit devices. A flip wafer is attached to the plurality of light emitting diodes, away from the carrier wafer and the carrier wafer is removed. The plurality of light emitting diodes may be singulated to form individual light emitting diode devices.
Abstract:
A device and method for localizing underfill includes a substrate, a plurality of dies, and underfill material. The substrate includes a plurality of contacts and a plurality of cavities separated by a plurality of mesas. The plurality of dies is mounted to the substrate using the plurality of contacts. The underfill material is located between the substrate and the dies. The underfill material is localized into a plurality of regions using the mesas. Each of the contacts is located in a respective one of the cavities. In some embodiments, the substrate further includes a plurality of channels interconnecting the cavities. In some embodiments, the substrate further includes a plurality of intra-cavity mesas for further localizing the underfill material. In some embodiments, outer edges of a first one of the dies rest on first mesas located on edges of a first one of the cavities.