FIN TRANSISTORS WITH SEMICONDUCTOR SPACERS

    公开(公告)号:US20220181462A1

    公开(公告)日:2022-06-09

    申请号:US17247212

    申请日:2020-12-03

    Abstract: In a general aspect, a transistor can include a fin having a proximal end and a distal end. The fin can include a dielectric portion longitudinally extending between the proximal end and the distal end, and a semiconductor layer disposed on the dielectric portion. The semiconductor layer can longitudinally extend between the proximal end and the distal end. The transistor can further include a source region disposed at the proximal end of the fin, and a drain region disposed at the distal end of the fin. The transistor can also include a gate dielectric layer disposed on a channel region of the semiconductor layer. The channel region can be disposed between the gate dielectric layer and the dielectric portion. The channel region can be longitudinally disposed between the source region and the drain region. The transistor can further include a conductive gate electrode disposed on the gate dielectric layer.

    Electronic Device Including a Transistor with a Non-uniform 2DEG

    公开(公告)号:US20200105916A1

    公开(公告)日:2020-04-02

    申请号:US16148127

    申请日:2018-10-01

    Abstract: An electronic device can include a channel layer, a first carrier supply layer, a gate electrode of a HEMT, and a drain electrode of the HEMT. The HEMT can have a 2DEG along an interface between the channel and first carrier supply layers. In an aspect, the 2DEG can have a highest density that is the highest at a point between the drain and gate electrodes. In another aspect, the HEMT can further comprise first and second carrier supply layers, wherein the first carrier supply layer is disposed between the channel and second carrier supply layers. The second carrier supply layer be thicker at a location between the drain and gate electrodes. In a further aspect, a process of forming an electronic device can include the HEMT. In a particular embodiment, first and second carrier supply layers can be epitaxially grown from an underlying layer.

Patent Agency Ranking