Abstract:
A level shifter circuit is designed to shift an input signal that switches within a first voltage range to supply an output signal that switches within a second voltage range, higher than the first voltage range. A first inverter stage has an input receiving the input signal and also has an output. A first capacitive element is connected between the output of the first input inverter stage and a first holding node. A latch stage is connected between the first holding node and a second holding node that is coupled to an output terminal, on which the output signal is present. The first input inverter stage is designed to operate in the first voltage range, and the latch stage is designed to operate in the second voltage range.
Abstract:
An input signal is amplified into an output signal that is to be applied to an electrical load including a capacitive component. An amplifier stage includes a pre-amplifier module to receive a first supply voltage, and an output module to receive a second supply voltage. The pre-amplifier module includes a first gain block to pre-amplify the input signal into a first pre-amplified signal, and a second gain block to pre-amplify the input signal into a second pre-amplified signal. A feedback block feeds back the output signal as a feedback signal. A combination element combines the first pre-amplified signal and the feedback signal into a combined signal. The output module combines the combined signal and the second pre-amplified signal into the output signal.
Abstract:
An amplifier circuit may include an input amplification stage comprising a first amplifier having first and second differential inputs and a first output, and a second amplifier having first and second differential inputs and a second output. The amplifier circuit also includes an output amplification stage having first and second inputs respectively coupled to the first and second outputs of the input amplification stage, and an output configured to supply an output voltage based upon the input voltage by an amplification factor. The amplifier circuit comprises a feedback stage with a common-mode control stage configured to implement a comparison between the first differential voltage and the second differential voltage, and a reference voltage, and generate respective regulation currents on the first and second inputs of the output amplification stage to compensate for a common-mode variation of the first differential voltage and the second differential voltage.
Abstract:
A memory device may include memory cells. The method may include receiving a request of reading a selected data word associated with a selected code word stored with an error correction code, and reading a first code word representing a first version of the selected code word by comparing a state of each selected memory cell with a first reference. The method may include verifying the first code word, setting the selected code word according to the first code word in response to a positive verification, reading at least one second code word representing a second version of the selected code word, verifying the second code word, and setting the selected code word according to the second code word in response to a negative verification of the first code word and to a positive verification of the second code word.
Abstract:
A decoding system for a phase change non-volatile memory device having a memory array may include a column decoder that selects at least one column of the memory array during programming operations. The decoding system includes a selection circuit that includes selection switches on a number of hierarchical decoding levels for defining a conductive path between at least one column and a driving stage. A biasing circuit may supply biasing signals to the selection switches for defining the first conductive path and bringing the selected column to a programming voltage value. The programming selection circuit may have protection elements between columns and the selection switches. The selection switches and the protection elements may include metal oxide semiconductor (MOS) transistors having an upper threshold voltage level lower than the programming voltage.
Abstract:
In an embodiment a circuit includes a plurality of memory cells, wherein each memory cell includes a phase-change memory storage element coupled in series with a respective current-modulating transistor between a supply voltage node and a reference voltage node, the current-modulating transistors being configured to receive a drive signal at a control terminal and to inject respective programming currents into the respective phase-change memory storage element as a function of the drive signal, a driver circuit configured to produce the drive signal at a common control node, wherein the common control node is coupled to the control terminals of the current-modulating transistors, the drive signal modulating the programming currents to produce SET programming current pulses and RESET programming current pulses and at least one current generator circuit configured to inject a compensation current for the programming currents into the common control node.
Abstract:
In an embodiment a ring oscillator circuit includes a chain of cascade-coupled inverter stages coupled between an oscillator supply voltage node and a reference voltage node, the oscillator supply voltage node configured to provide an oscillator supply voltage, a current generator circuit coupled between the oscillator supply voltage node and a system supply voltage node configured to provide a system supply voltage, the current generator circuit being configured to inject a current into the oscillator supply voltage node and a biasing circuit including a first bias control transistor and a second bias control transistor coupled in series between the reference voltage node and the oscillator supply voltage node, wherein the first bias control transistor is configured to selectively couple the reference voltage node and the oscillator supply voltage node in response to the oscillator control signal being indicative that the ring oscillator circuit is in an inactive operation state.
Abstract:
In an embodiment, a non-volatile memory device includes a memory array including a plurality of memory portions, each memory portion having a respective plurality of memory cells arranged in rows and columns, wherein the memory portions are arranged in groups, each group of memory portions having a plurality of respective memory portions arranged in a row and a plurality of respective wordlines that extend through the respective memory portions, and wherein the memory cells of the memory portions of the group are coupled to the respective wordlines and a row decoder including a pre-decoding stage configured to execute a selection, in which it selects a wordline that extends through a group of memory portions and deselects other wordlines that extend through the group of memory portions, and a subsequent deselection, in which it deselects all the wordlines that extend through the group of memory portions, wherein the row decoder further includes, for each group of memory portions, a shared pull-up stage configured to decouple from or couple to a node at a first reference potential each wordline that extends through the group of memory portions, when the wordline is respectively selected or deselected, so as to impose on each wordline, when deselected, a deselection voltage, a plurality of pull-down stages distributed along the group of memory portions, each pull-down stage being configured to locally couple each wordline that extends through the group of memory portions, when selected, to a node at a second reference potential, so as to impose locally a selection voltage on the wordline, wherein each pull-down stage is further configured to locally decouple from the node at the second reference potential each wordline that extends through the group of memory portions, when deselected; and a number of local pull-up stages distributed along the group of memory portions, each local pull-up stage having, for each wordline that extends through the group of memory portions, a corresponding local pull-up transistor of an NMOS type.
Abstract:
Described herein is a non-volatile memory device in which it is possible to switch between different reading modes. In particular, the memory device includes a plurality of memory cells and implements, alternatively, a reading of a differential type and a reading of a single-ended type. Further described herein is a method for reading the memory device.
Abstract:
A sense structure includes: a sense amplifier core configured to compare a measurement current with a reference current; a cascode transistor coupled to the sense amplifier core and configured to be coupled to a load; a switch coupled between a bias voltage node and a control terminal of the cascode transistor; a local capacitor having a first terminal coupled to the control terminal of the cascode transistor; a first transistor coupled between a second terminal of the local capacitor and a reference terminal; and a control circuit coupled to a control terminal of the first transistor, the control circuit configured to disconnect the local capacitor from the reference terminal to produce a voltage overshoot in the control terminal of the cascode transistor, and after disconnecting the local capacitor from the reference terminal, limit or reduce the voltage overshoot by adjusting a voltage of the control terminal of the first transistor.