Abstract:
A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
Abstract:
An epitaxial structure for a III-Nitride based optical device, comprising an active layer with anisotropic strain on an underlying layer, where a lattice constant and strain in the underlying layer are partially or fully relaxed in at least one direction due to a presence of misfit dislocations, so that the anisotropic strain in the active layer is modulated by the underlying layer.
Abstract:
A Vertical Cavity Surface Emitting Laser (VCSEL) including a light emitting III-nitride active region including quantum wells (QWs), wherein each of the quantum wells have a thickness of more than 8 nm, a cavity length of at least 7 λ, or at least 20 λ, where lambda is a peak wavelength of the light emitted from the active region, layers with reduced surface roughness, a tunnel junction intracavity contact. The VCSEL is flip chip bonded using In—Au bonding. This is the first report of a VCSEL capable of continuous wave operation.
Abstract:
A hybrid growth method for III-nitride tunnel junction devices uses metal-organic chemical vapor deposition (MOCVD) to grow one or more light-emitting or light-absorbing structures and ammonia-assisted or plasma-assisted molecular beam epitaxy (MBE) to grow one or more tunnel junctions. Unlike p-type gallium nitride (p-GaN) grown by MOCVD, p-GaN grown by MBE is conductive as grown, which allows for its use in a tunnel junction. Moreover, the doping limits of MBE materials are higher than MOCVD materials. The tunnel junctions can be used to incorporate multiple active regions into a single device. In addition, n-type GaN (n-GaN) can be used as a current spreading layer on both sides of the device, eliminating the need for a transparent conductive oxide (TCO) layer or a silver (Au) mirror.
Abstract:
A physical vapor deposition (e.g., sputter deposition) method for III-nitride tunnel junction devices uses metal-organic chemical vapor deposition (MOCVD) to grow one or more light-emitting or light-absorbing structures and electron cyclotron resonance (ECR) sputtering to grow one or more tunnel junctions. In another method, the surface of the p-type layer is treated before deposition of the tunnel junction on the p-type layer. In yet another method, the whole device (including tunnel junction) is grown using MOCVD and the p-type layers of the III-nitride material are reactivated by lateral diffusion of hydrogen through mesa sidewalls in the III-nitride material, with one or more lateral dimensions of the mesa that are less than or equal to about 200 μm. A flip chip display device is also disclosed.
Abstract:
A Vertical Cavity Surface Emitting Laser (VCSEL) including a light emitting III-nitride active region including quantum wells (QWs), wherein each of the quantum wells have a thickness of more than 8 nm, a cavity length of at least 7 λ, or at least 20 λ, where lambda is a peak wavelength of the light emitted from the active region, layers with reduced surface roughness, a tunnel junction intracavity contact. The VCSEL is flip chip bonded using In-Au bonding. This is the first report of a VCSEL capable of continuous wave operation.
Abstract:
A method for protecting a semiconductor film comprised of one or more layers during processing. The method includes placing a surface of the semiconductor film in direct contact with a surface of a protective covering, such as a separate substrate piece, that forms an airtight or hermetic seal with the surface of the semiconductor film, so as to reduce material degradation and evaporation in the semiconductor film. The method includes processing the semiconductor film under some conditions, such as a thermal annealing and/or controlled ambient, which might cause the semiconductor film's evaporation or degradation without the protective covering.
Abstract:
A III-nitride tunnel junction with a modified p-n interface, wherein the modified p-n interface includes a delta-doped layer to reduce tunneling resistance. The delta-doped layer may be doped using donor atoms comprised of Oxygen (O), Germanium (Ge) or Silicon (Si); acceptor atoms comprised of Magnesium (Mg) or Zinc (Zn); or impurities comprised of Iron (Fe) or Carbon (C).
Abstract:
A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
Abstract:
III-V micro light-emitting diodes (LEDs) are fabricated using a photoelectrochemical (PEC) etch. A sacrificial layer and III-V device layers are epitaxially grown on a host substrate, wherein the III-V device layers are patterned to form the micro-LEDs. The sacrificial layer is removed by a photoelectrochemical (PEC) etch, so as to fully or partially separate the micro-LEDs from the substrate, before or after the micro-LEDs are bonded to a submount or intermediate substrate. The micro-LEDs may be bonded to a submount with a polymer film deposited thereon, wherein the polymer film with the micro-LEDs is subsequently delaminated from the submount. Alternatively, the intermediate substrate may be a transfer medium, wherein the micro-LEDs are separated from the host substrate by mechanical fracturing, and then bonded to a second substrate, after which the intermediate substrate is removed, wherein a third substrate may be bonded to exposed surfaces of the transferred micro-LEDs.