Abstract:
An apparatus and method for enhancing thermal performance and electromagnetic interference (EMI) shielding in die-up array integrated circuit (IC) device packages is presented. A die-up array package includes an IC die mounted to a first stiffener surface. The package further includes a cap body having first and second surfaces. A first portion of the second surface has a cavity formed therein, and a planar second portion of the second surface is coupled to the first stiffener surface. The package further includes a substrate having a first surface coupled to a second stiffener surface. A plurality of contact pads on the first substrate surface are electrically connected to an array of electrically conductive terminals on a second substrate surface. The stiffener and cap body form a die enclosure that dissipates heat during operation of the IC die, and shields EMI emanating from and radiating toward the IC die.
Abstract:
Methods and apparatus for improved thermal performance and electromagnetic interference (EMI) shielding in integrated circuit (IC) packages are described. A die-up or die-down package includes an IC die, a die attach pad, a heat spreader cap coupled to the die attach pad defining a cavity, and one or more peripheral rows of leads surrounding the die attach pad. The leads do not protrude substantially from the footprint of the encasing structure. The die attach pad and the heat spreader cap defines an encasing structure that substantially encloses the IC die, and shields EMI emanating from and radiating towards the IC die. The encasing structure also dissipates heat generated by the IC die during operation.
Abstract:
Electrically, thermally and mechanically enhanced ball grid array (BGA) packages are described. An IC die is mounted on a first surface of a stiffener. A first surface of a substrate is attached to a second surface of the stiffener that is opposed to the first surface of the stiffener. A bond pad of the IC die is coupled to a contact pad on the first surface of the substrate with a wire bond. The wire bond is coupled over a recessed step region in the first surface of the stiffener and through a through-pattern in the stiffener that has an edge adjacent to the recessed step region. The through-pattern in the stiffener is one of an opening through the stiffener, a recessed portion in an edge of the stiffener, or other through-pattern.
Abstract:
Electrically, thermally and mechanically enhanced ball grid array (BGA) packages are described. An IC die is mounted to a first surface of a first stiffener. A peripheral edge portion of a second surface of the first stiffener is attached to a first surface of a second stiffener to cover an opening through the second stiffener that is open at the first surface and a second surface of the second stiffener. The second surface of the second stiffener is attached to a first surface of a substantially planar substrate that has a plurality of contact pads on the first surface of the substrate. The plurality of contact pads are electrically connected through the substrate to a plurality of solder ball pads on a second surface of the substrate.
Abstract:
An electrically and thermally enhanced die-up tape substrate ball grid array (BGA) package and die-up plastic substrate BGA package are described. A substrate that has a first surface and a second surface is provided. The stiffener has a first surface and a second surface. The second stiffener surface is attached to the first substrate surface. An IC die has a first surface and a second surface. The first IC die surface is mounted to the first stiffener surface. A plurality of solder balls is attached to the second substrate surface. In one aspect, a heat spreader is mounted to the second IC die surface. In another aspect, the stiffener is coupled to ground to act as a ground plane. In another aspect, the substrate has a window opening that exposes a portion of the second stiffener surface. The exposed portion of the second stiffener surface is configured to be coupled to a printed circuit board (PCB). In another aspect, a metal ring is attached to the first stiffener surface. In another aspect, wire bond openings in the stiffener are bridged by one or more studs.
Abstract:
An electrically and thermally enhanced die-up ball grid array (BGA) package is described. An integrated circuit (IC) package includes a first substrate, a second substrate, and a stiffener. A surface of the first substrate is attached to a first surface of the stiffener. A surface of the second substrate is attached to a second surface of the stiffener. An IC die may be attached to a second surface of the second substrate or to the second surface of the stiffener. Additional electronic devices may be attached to the second surface of the second substrate.
Abstract:
Methods and apparatus are disclosed for wirelessly communicating among integrated circuits and/or functional modules within the integrated circuits. A semiconductor device fabrication operation uses a predetermined sequence of photographic and/or chemical processing steps to form one or more functional modules onto a semiconductor substrate. The functional modules are coupled to an integrated waveguide that is formed onto the semiconductor substrate and/or attached thereto to form an integrated circuit. The functional modules communicate with each other as well as to other integrated circuits using a multiple access transmission scheme via the integrated waveguide. One or more integrated circuits may be coupled to an integrated circuit carrier to form Multichip Module. The Multichip Module may be coupled to a semiconductor package to form a packaged integrated circuit.
Abstract:
A semiconductor package may include a substrate, and a semiconductor interposer having a cavity and a plurality of through semiconductor vias. The semiconductor interposer is situated over the substrate. An intra-interposer die is disposed within the cavity of the semiconductor interposer. A thermally conductive adhesive is disposed within the cavity and contacts the intra-interposer die. Additionally, a top die is situated over the semiconductor interposer. In one implementation, the semiconductor interposer is a silicon interposer. In another implementation, the semiconductor interposer is flip-chip mounted to the substrate such that the intra-interposer die disposed within the cavity faces the substrate. In yet another implementation, the cavity in the semiconductor interposer may extend from a top surface of the semiconductor interposer to a bottom surface of the semiconductor interposer and a thermal interface material may be disposed between the intra-interposer die and the substrate.
Abstract:
Embodiments of the present invention are directed to a wireless-enabled component (WEC) for enabling a wireless bus for intra-chip and inter-chip communication. A WEC encompasses a functional block of an IC (such as, for example, a processing core of a processing unit), an entire IC (such as, for example, a processing unit), or a device that includes a plurality of ICs (such as, for example, a handheld device). According to embodiments, a WEC may be associated with one or more sub-blocks of an IC, a single IC, or a plurality of ICs.
Abstract:
Methods and apparatus are disclosed to simultaneously, wirelessly test semiconductor components formed on a semiconductor wafer. The semiconductor components transmit respective outcomes of a self-contained testing operation to wireless automatic test equipment via a common communication channel. Multiple receiving antennas observe the outcomes from multiple directions in three dimensional space. The wireless automatic test equipment determines whether one or more of the semiconductor components operate as expected and, optionally, may use properties of the three dimensional space to determine a location of one or more of the semiconductor components. The wireless testing equipment may additionally determine performance of the semiconductor components by detecting infrared energy emitted, transmitted, and/or reflected by the semiconductor wafer before, during, and/or after a self-contained testing operation.