Abstract:
A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an α-axis direction comprising a 0.15° or greater miscut angle towards the α-axis direction and a less than 30° miscut angle towards the α-axis direction.
Abstract:
A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
Abstract:
Methods of controlling stress in GaN films deposited on silicon and silicon carbide substrates and the films produced therefrom are disclosed. A typical method comprises providing a substrate and depositing a graded gallium nitride layer on the substrate having a varying composition of a substantially continuous grade from an initial composition to a final composition formed from a supply of at least one precursor in a growth chamber without any interruption in the supply. A typical semiconductor film comprises a substrate and a graded gallium nitride layer deposited on the substrate having a varying composition of a substantially continuous grade from an initial composition to a final composition formed from a supply of at least one precursor in a growth chamber without any interruption in the supply.
Abstract:
A III-nitride light emitting diode (LED) and method of fabricating the same, wherein at least one surface of a semipolar or nonpolar plane of a III-nitride layer of the LED is textured, thereby forming a textured surface in order to increase light extraction. The texturing may be performed by plasma assisted chemical etching, photolithography followed by etching, or nano-imprinting followed by etching.
Abstract:
A method of performing a photoelectrochemical (PEC) etch on an exposed surface of a semipolar {20-2-1} III-nitride semiconductor, for improving light extraction from and for enhancing external efficiency of one or more active layers formed on or above the semipolar {20-2-1} III-nitride semiconductor.
Abstract:
A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
Abstract:
Reactor designs for use in ammonothermal growth of group-III nitride crystals. Internal heating is used to enhance and/or engineer fluid motion, gas mixing, and the ability to create solubility gradients within a vessel used for the ammonothermal growth of group-III nitride crystals. Novel baffle designs are used for control and improvement of continuous fluid motion within a vessel used for the ammonothermal growth of group-III nitride crystals.
Abstract:
Boron-containing compounds, gasses and fluids are used during ammonothermal growth of group-III nitride crystals. Boron-containing compounds are used as impurity getters during the ammonothermal growth of group-III nitride crystals. In addition, a boron-containing gas and/or supercritical fluid is used for enhanced solubility of group-III nitride into said fluid.
Abstract:
A III-nitride based LED with an External Quantum Efficiency (EQE) droop of less than 10% when a junction temperature of the LED is increased from 20 ° C. to at least 100 ° C. at a current density of the LED of at least 20 Amps per centimeter square.