Abstract:
A microelectronic device mounting substrate includes a bond pad with a side wall and an upper surface. A dielectric first layer is disposed on the mounting substrate and a solder mask second layer is disposed on the dielectric first layer. A uniform recess is disposed through the solder mask second layer and the dielectric first layer that exposes the portion of the bond pad upper surface.
Abstract:
A method for fabricating a circuit board includes providing a first substrate, forming a circuit on the first substrate, the circuit having a first electrode, a second electrode and at least one nanostructure, and transferring the circuit from the first substrate to a surface of a second substrate made of a polymer.
Abstract:
In some embodiments, an apparatus includes a printed circuit board and a thermal interface member. The printed circuit board is configured to be coupled to an electronic device, such as, for example, a removable (or “pluggable”) optical transceiver. A first surface of the printed circuit board includes a thermally-conductive portion, and a second surface of the printed circuit board includes a thermally-conductive portion that is coupled to the thermally-conductive portion of the first surface by a thermally-conductive via between the first surface and the second surface. The thermal interface member is coupled to the first surface of the printed circuit board such that a portion of the thermal interface member is in contact with the thermally-conductive portion of the first surface. The portion of thermal interface member is deformable and thermally-conductive.
Abstract:
Circuit boards having a polymer substrate, a first electrode and a second electrode disposed on a surface of the polymer substrate, and at least one nanostructure electrically connected to the first and second electrodes are generally disclosed.
Abstract:
The invention relates to a high-voltage insulation circuit board which is used in an electric power apparatus such as an electric power converter or the like such as power semiconductor device, inverter module, or the like and provides an insulation circuit board in which electric field concentration at the end sections of a wiring pattern is reduced, partial discharging is suppressed, and a reliability is high. According to the invention, there is provided an insulation circuit board having: a metal base substrate; and wiring patterns which are formed onto at least one of the surfaces of the metal base substrate through an insulation layer, characterized in that between two adjacent wiring patterns in which an electric potential difference exists among the wiring patterns, at least one or more wiring patterns or conductors which are in contact with the insulation layer and have an electric potential in a range of the electric potential difference between the adjacent wiring patterns are arranged. According to the invention, the electric field concentration at the end sections of the wiring pattern to which a high voltage is applied is reduced and partial-discharge-resistant characteristics are improved.
Abstract:
A plasma display device includes a plasma display panel (PDP) having electrodes between front and rear substrates, a chassis base on an outer surface of the PDP, a printed circuit board assembly (PBA) on the chassis base, a flexible printed circuit (FPC) connecting the PBA to the electrodes of the PDP, an anisotropic conductive film between terminals of the electrodes and a terminal of the FPC, and a sealing member surrounding the terminals of the electrodes and the terminal of the FPC, the sealing member including a surface hydrophobic modifying layer and an insulation layer.
Abstract:
It is an object of the present invention to provide a component for plating suitably used in, for example, producing a printed circuit board, a solution, and a printed circuit board including the component, the component for plating having satisfactory adhesion to an electroless plating film provided on a surface of the component even when the surface roughness of the surface of the component is small. The object is achieved by a component for electroless plating including at least a surface a for electroless plating, the surface a having a surface roughness of 0.5 μm or less in terms of arithmetic average roughness measured with a cutoff value of 0.002 mm, and the surface a containing a polyimide resin having a siloxane structure.
Abstract:
The invention relates to a method of fabricating a flexible-rigid PCB which includes a flexible circuit substrate and a rigid circuit substrate. The flexible circuit substrate defines a rigid region and an exposed region and has a conductive pattern, such as conductive traces, formed on the exposed region. The method includes the steps of providing the flexible circuit substrate; printing a paste containing epoxy-silicone hybrid materials onto the conductive pattern; curing the paste; and building up the rigid circuit substrate on the rigid region of the flexible circuit substrate. Particularly, the paste having a specific composition is subjected to predetermined conditions of temperature and time in order to transform the paste into a peelable mask with heat resistance, chemical resistance and a contact angle greater than 20 degrees.
Abstract:
A silicone protective coating for an electronic light source and a method for applying the coating over an exposed or outer surface of the electronic light source assembled as part of or mounted to a circuit board or other substrate.
Abstract:
The invention relates to a photo-curable resin composition, which contains a polyimide silicone having a primary alcoholic hydroxyl group, as a component (A); at least one compound selected from the group consisting of an amino condensation product modified with formalin or a formalin-alcohol and a phenol compound having two or more in average of methylol group or alkoxymethylol group in one molecule thereof, as a component (B); and a photo-acid generator as a component (C). When used as an adhesive, the photo-curable resin composition further contains a multifunctional epoxy compound as a component (D).