Abstract:
A wiring board comprising: a board core (11) having a core main surface (12) and a core reverse surface (13); a capacitor (101, 101A, 101B, 101C, 101D, 101E, 101F, 101G, 101H, 101J, 1101, 1101′, 1101″, 1101′″, 1101″″, 1101′″″) having a capacitor main surface (102) and a capacitor reverse surface (103) and having a structure in which first inner electrode layers (141) and second inner electrode layers (142) are alternately laminated and arranged via a dielectric layer (105), the capacitor (101, 101A, 101B, 101C, 101D, 101E, 101F, 101G, 101H, 101J, 1101, 1101′, 1101″, 1101′″, 1101″″, 1101′″″) being accommodated in the board core (11) in a state in which the core main surface (12) and the capacitor main surface (102) are oriented on a same side; and a wiring laminated portion (31) having a structure in which interlayer insulating layers (33, 35) and conductor layers (42) are alternately laminated on the core main surface (12) and the capacitor main surface (102), wherein an inductor (251, 252, 253) or a resistor (301, 302, 311, 312, 321, 322) is formed on or in the capacitor (101, 101A, 101B, 101C, 101D, 101E, 101F, 101G, 101H, 101J, 1101, 1101′, 1101″, 1101′″, 1101″″, 1101′″″).
Abstract:
A wiring board includes a plurality of via pads disposed on a ceramic sub-core accommodated in a core board. A Cu-plated layer is formed on the surface of a conductor pad and serves as a processed face, i.e., a face to which Cu surface chemical processing is applied in order to improve the adhesion between the surface of the Cu-plated layer and that of an adjacent polymer material. The lowermost dielectric layer of a laminated wiring portion, and a via conductor formed in the dielectric layer, are in electrical contact with the processed face.
Abstract:
An electronic apparatus and a circuit board thereof are provided. The electronic apparatus operates in cooperation with a packaged electronic component. The electronic apparatus includes a circuit board and a control device disposed on the circuit board. The circuit board includes a plurality of conductive vias passing therethrough, and the conductive vias includes a plurality of first conductive vias arranged respectively corresponding to the first contact pads of the packaged electronic component. The control device includes a signal contact array including a plurality of first signal contacts. When the packaged electronic component and the control device are respectively disposed on two opposite sides of the circuit board, the packaged electronic component and the control device at least partially overlap in a thickness direction of the circuit board, and the first signal contacts are respectively electrically connected to the first contact pads via the corresponding conductive vias.
Abstract:
A method of manufacturing a component-built-in wiring substrate which exhibits excellent reliability, through improvement of adhesion between a resin filler and a core substrate, is provided. In some embodiments the method comprises a core substrate preparation step for preparing a core substrate, an accommodation-hole forming step for forming an accommodation hole in the core substrate, and a through-hole forming step for forming through-holes. In a plating-layer forming step, a plating layer is formed on an inner wall surface of the accommodation hole and plating layers are formed on the inner wall surfaces of the through-holes, which become through-hole conductors each having a hollow. In an accommodation step, a component is accommodated in the accommodation hole. In a resin charging step, a resin filler is filled into a gap between component side-surfaces and the inner wall surface of the accommodation hole and into the hollows.
Abstract:
A method of manufacturing a component-built-in wiring substrate which exhibits excellent reliability, through improvement of adhesion between a resin filler and a core substrate, is provided. In some embodiments the method comprises a core substrate preparation step for preparing a core substrate, an accommodation-hole forming step for forming an accommodation hole in the core substrate, and a through-hole forming step for forming through-holes. In a plating-layer forming step, a plating layer is formed on an inner wall surface of the accommodation hole and plating layers are formed on the inner wall surfaces of the through-holes, which become through-hole conductors each having a hollow. In an accommodation step, a component is accommodated in the accommodation hole. In a resin charging step, a resin filler is filled into a gap between component side-surfaces and the inner wall surface of the accommodation hole and into the hollows.
Abstract:
A method for manufacturing a wiring board including, as steps executed in written order: a sub-core accommodation step of accommodating the ceramic sub-core in the sub-core accommodation space through the first-major-surface-side opening of the sub-core accommodation space; and a film formation and charging step of forming a lowest resin insulating layer of the first-major-surface-side wiring laminate by sticking a resin material to the core body and the ceramic sub-core from the first major surface side, and forming a groove-filling portion that is continuous with the lowest resin insulating layer by charging the resin material into a gap between the core body and the ceramic sub-core.
Abstract:
An objective is to provide a component-incorporated wiring substrate capable of solving a problem caused by an increase in length of wiring lines that connect a component and a capacitor. A component-incorporated wiring substrate 10 includes a core substrate 11, a first capacitor 301, a wiring laminate portion 31, and a second capacitor 101. An accommodation hole portion 90 of the core substrate 11 accommodates the first capacitor 101 therein, and a component-mounting region 20 is set on a surface 39 of the wiring laminate portion 31. The second capacitor 101 has electrode layers 102, 103 and a dielectric layer 104. The second capacitor 101 is embedded in the wiring laminate portion 31 in such a state that first main surfaces 105, 107 and second main surfaces 106, 108 are in parallel with the surface 39 of the wiring laminate portion 31, and is disposed between the first capacitor 301 and the component-mounting region 20.
Abstract:
A wiring substrate in which a capacitor is provided, the capacitor comprising a capacitor body including a plurality of dielectric layers and internal electrode layers provided between the different dielectric layers, wherein said capacitor body has, in at least one side face of said capacitor body, recesses extending in a thickness direction of said capacitor body from at least one of a first principal face of said capacitor body and a second principal face positioned on the side opposite to the first principal face.
Abstract:
A method for manufacturing printed wiring board including preparing an electronic component having first and second surfaces and electrode on the first surface, forming in an adhesive tape a mark, mounting based on the mark the component on the tape such that the second surface faces the adhesive of the tape, forming another mark on insulative substrate having first and second surfaces, forming in the substrate an opening larger than the component, mounting based on the marks the substrate on the tape such that the component is in the opening of the substrate, fixing the component to the substrate using resin, forming an insulation layer on the first surface of the substrate where the component is accommodated, removing the tape, forming in the layer an opening reaching the electrode, forming a conductive circuit on the layer, and forming in the opening of the layer a via connected to the electrode.
Abstract:
A wiring substrate and method of forming a wiring substrate. The wiring substrate includes a base substrate, a first resin insulating layer provided on the base substrate and a laminated capacitor formed within the first resin insulating layer. The laminated capacitor includes a plurality of capacitors laminated to each other by adhesive, each capacitor including a first electrode, a second electrode opposing the first electrode and a dielectric layer interposed between the first and second electrodes. A first via conductor electrically connects the first electrodes of the plurality of capacitors to each other, and a second via conductor electrically connects the second electrodes of the plurality of capacitors to each other. A first external terminal electrically connects to the first via conductor, and a second external terminal electrically connects to the second via conductor.