Abstract:
Some forms relate to an electronic system that includes a textile. The electronic system includes a stretchable body that includes an integrated circuit that is configured to compute and communicate with an external device, wherein the stretchable body further includes at least one of (i) a power source that provides power to at least one of the electronic components; (ii) at least one sensor; (iii) a sensing node that receives signals from each sensor and sends signals to the integrated circuit; and (iv) an antenna that is configured to send and receive signals to and from the integrated circuit and the external device; and a textile attached to the stretchable body.
Abstract:
A flexible computing fabric and a method of forming thereof. The flexible computing fabric includes an electronic substrate including one or more channels and including at least two ends. At least one computational element is mounted on the electronic substrate between the two ends and at least one functional element is mounted on the electronic substrate between the two ends. The channels form an interconnect between the elements. In addition, the electronic substrate is flexible and exhibits a flexural modulus in the range of 0.1 GPa to 30 GPa.
Abstract:
Microelectronic systems encapsulated in a stretchable/flexible material, which is skin/bio-compatible and able to withstand environmental conditions. In one embodiment of the present description, the microelectronic system includes a microelectronic device that is substantially encapsulated in a non-permeable encapsulant, such as, butyl rubbers, ethylene propylene rubbers, fluoropolymer elastomers, or combinations thereof. In another embodiment, the microelectronic system includes a microelectronic device that is substantially encapsulated in a permeable encapsulant, such as polydimethylsiloxane, wherein a non-permeable encapsulant substantially encapsulates the permeable encapsulant.
Abstract:
The subject matter of the present description relates to methods for the precise integration of microelectronic dice within a multichip package which substantially reduce or eliminate any misalign caused by the movement of the microelectronic dice during the integration process. These methods may include the use of a temporary adhesive in conjunction with a carrier having at least one recess for microelectronic die alignment, the use of a precision molded carrier for microelectronic die alignment, the use of magnetic alignment of microelectronic dice on a reusable carrier, and/or the use of a temporary adhesive with molding processes on a reusable carrier.
Abstract:
Exoskeleton technology is described herein. Such technology includes but is not limited to exoskeletons, exoskeleton controllers, methods for controlling an exoskeleton, and combinations thereof. The exoskeleton technology may facilitate, enhance, and/or supplant the natural mobility of a user via a combination of sensor elements, processing/control elements, and actuating elements. User movement may be elicited by electrical stimulation of the user's muscles, actuation of one or more mechanical components, or a combination thereof. In some embodiments, the exoskeleton technology may adjust in response to measured inputs, such as motions or electrical signals produced by a user. In this way, the exoskeleton technology may interpret known inputs and learn new inputs, which may lead to a more seamless user experience.
Abstract:
A layer or layers for use in package substrates and die spacers are described. The layer or layers include a plurality of ceramic wells lying within a plane and separated by metallic vias. Recesses within the ceramic wells are occupied by a dielectric filler material.
Abstract:
The present disclosure relates to the field of fabricating microelectronic packages, wherein components of the microelectronic packages may have magnetic attachment structures comprising a magnetic component and a metal component. The magnetic attachment structure may be exposed to a magnetic field, which, through the vibration of the magnetic component, can heat the magnetic attachment structure, and which when placed in contact with a solder material can reflow the solder material and attach microelectronic components of the microelectronic package.
Abstract:
A multi-chip package includes a substrate (110) having a first side (111), an opposing second side (112), and a third side (213) that extends from the first side to the second side, a first die (120) attached to the first side of the substrate and a second die (130) attached to the first side of the substrate, and a bridge (140) adjacent to the third side of the substrate and attached to the first die and to the second die. No portion of the substrate is underneath the bridge. The bridge creates a connection between the first die and the second die. Alternatively, the bridge may be disposed in a cavity (615, 915) in the substrate or between the substrate and a die layer (750). The bridge may constitute an active die and may be attached to the substrate using wirebonds (241, 841, 1141, 1541).