Abstract:
A stacked chip assembly includes individual units having chips mounted on dielectric layers and traces on the dielectric layers interconnecting the contacts of the chips with terminals disposed in peripheral regions of the dielectric layers. At least some of the traces are multi-branched traces which connect chip select contacts to chip select terminals. The units are stacked one above the other with corresponding terminals of the different units being connected to one another by solder balls or other conductive elements so as to form vertical buses. Prior to stacking, the multi-branched traces of the individual units are selectively connected, as by forming solder bridges, so as to leave chip select contacts of chips in different units connected to different chip select terminals and thereby connect these chips to different vertical buses. The individual units desirably are thin and directly abut one another so as to provide a low-height assembly with good heat transfer from chips within the stack.
Abstract:
A finely divided refractory solid and an associated method are provided. The solid may have a surface area that is greater than about 5 square meters per gram. The solid may have a density of active surface termination sites per square nanometer of surface area sufficiently low that a curable composition comprising a curable resin that comprises less than about 99 percent by weight of the solid has a stability ratio of less than about 3 after a period of about two weeks. Also, a curable composition, a cured layer, and an electronic device that includes the cured layer are provided.
Abstract:
A synthetic crossband is disclosed. The synthetic crossband comprises impregnated paper, which is impregnated with a saturating resin which includes phenolic resin, such as phenolic-formaldehyde resin, that is then cured. At least a portion of one side of the impregnated paper includes a layer of partially cured adhesive resin, which includes melamine-formaldehyde resin, urea-formaldehyde resin, or a mixture thereof.
Abstract:
A semiconductor chip mounting component includes a support structure adapted to engage a semiconductor chip. The support structure has a top surface, a bottom surface, and a gap extending through the support structure for defining first and second portions of the support structure on opposite sides of the gap. The support structure includes at least one elongated bus disposed alongside the gap, on the second portion of the support structure. The support structure includes a plurality of electrically conductive leads, each lead having a connection section extending across the gap, the connection section having a first end disposed on the first portion of the support structure, and a second end secured to the bus. Each lead includes a frangible section disposed between the first and second ends of the connection section, the frangible section having a cross-sectional area that is smaller than a cross-sectional area of the connection section. The gap is open at the bottom surface of the support structure. A semiconductor chip is disposed beneath the bottom surface of the support structure. The leads are adapted to be bonded to contacts on the semiconductor chip by breaking the frangible sections of the leads so as to disconnect the second ends of the leads from the bus and engage the leads with the contacts of the semiconductor chip.
Abstract:
A solvent modified resin underfill material comprising a resin in combination with a filler of functionalized colloidal silica and solvent to form a transparent B-stage resin composition, which may then be cured to form a low CTE, high Tg thermoset resin. Embodiments of the disclosure include use as a wafer level filler, and an encapsulant for electronic chips.
Abstract:
A connection component for electrically connecting a semiconductor chip to support substrate incorporates a preferably dielectric supporting structure (70) defining gaps (40). Leads extend across these gaps so that the leads are supported both sides of the gap (66, 70). The leads therefore can be positioned approximately in registration to contacts on the chip by aligning the connection component with the chip. Each lead is arranged so that one end can be displaced relative to the supporting structure when a downward force is applied to the lead. This allows the leads to be connected to the contacts on the chip by engaging each lead with a tool and forcing the lead downwardly against the contact. Preferably, each lead incorporates a frangible section (72) adjacent one side of the gap and the frangible section is broken when the lead is engaged with the contact. Final alignment of the leads with the contacts on the chip is provided by the bonding tool which has features adapted to control the position of the lead.
Abstract:
Improved healing of wounds, particularly wounds of the eye, such as keratorefractive surgical incisions, is obtained by coating the wound surfaces with a solution containing a protein crosslinking compound such as dimethyl pimelimidate dihydrochloride, followed by treatment with a composition containing an extracellular matrix material such as fibronectin, a biologically active fragment or an analog thereof.
Abstract:
Some embodiments provide a construction system that includes a plurality of panels. Moreover, at least some of the plurality of panels may include an upper side, a lower side, an insulation member, and at least one support member that is coupled to the insulation member. In some aspects, the support member may be coupled to the insulation member such that the support member extends from the upper side to the lower side of the panel. In some embodiments, the construction system may also include a plurality of engagement elements that are configured to engage at least some of the panels to assemble the panels into at least a portion of a structure.
Abstract:
A system, method, and computer program product for generating a distributable software package, including loading a template/profile; loading at least one module; receiving configuration options over a network connection; and assembling a distributable software package according to the profile, template(s), modules, and the configuration options.
Abstract:
An assembly for testing microelectronic devices includes a microelectronic element having faces and contacts, a flexible substrate spaced from and overlying a first face of the microelectronic element, and a plurality of conductive posts extending from the flexible substrate and projecting away from the first face of the microelectronic element, at least some of the conductive posts being electrically interconnected with the microelectronic element. The assembly also includes a plurality of support elements disposed between the microelectronic element and the substrate for supporting the flexible substrate over the microelectronic element. At least some of the conductive posts are offset from the support elements.