Abstract:
A cover, which is capable of supporting multi-purpose contents and of improving portability and utility, is disclosed. The cover capable of supporting multi-purpose contents includes a front cover and a back cover which are superposed on front and back surfaces of a page unit and are bound by a binder. The front cover includes a main front cover part and a subsidiary front cover part which are separated from each other by a separation line, and an angle holding unit is provided between the main front cover part and the subsidiary front cover part to maintain an angle between the main front cover part and the subsidiary front cover part. Further, a position holding unit may be provided between the front cover and the back cover to hold the front and back covers in a folded or erected position.
Abstract:
A semiconductor package and a method of manufacturing the semiconductor package. The semiconductor package include a substrate including a plurality of pads and a plurality of bumps evenly disposed on an entire region of the substrate regardless of an arrangement of the plurality of pads. According to the present invention, a simplification of a process can be accomplished, a cost of a process can be reduced, reliability can be improved and an under-filling can become easy.
Abstract:
Management of files in a memory, such as a flash memory, includes storing in the memory a first node including a first type of metadata of the file, a second node including data of the file and a third node including a second type of metadata of the file including file status and memory location information for the first and second nodes. The third node may include a node including memory location information for the second node and a node including an index table that cross-references a memory location for the memory location information for the second node to a memory location of the first node. Methods and devices may be provided.
Abstract:
A carrier and a method for manufacturing a printed circuit board are disclosed. The method for manufacturing a printed circuit board may include: forming a first circuit pattern on each of a pair of release layers, which are attached respectively to either side of a base layer by adhesive layers; detaching the pair of release layers from the base layer; stacking and pressing the pair of release layers onto either side of an insulation substrate such that the first circuit patterns are buried in the insulation substrate; and separating the pair of release layers. By forming a circuit pattern on each of a pair of release layers with a single process, and transferring the circuit pattern into each side of an insulation substrate, the manufacturing process can be shortened and circuit patterns can be formed to a high density.
Abstract:
A ring binder includes at least two first and second pipes which are hollow inside; a first ring positioned at an end of the first pipe to be opened and closed; a second ring positioned between the first pipe and the second pipe to be opened and closed; a third ring positioned at an end of the second pipe to be opened and closed; and a support bar passing through the first and second pipes and the first through third rings and holding the first and third rings so that the first and third rings are not separated from the first and second pipes, wherein ends of first, second, and third stationary half rings are combined with and separated from ends of first, second, and third rotating half rings.
Abstract:
A method of manufacturing a circuit board, which includes a bump pad on which a solder bump may be placed, may include forming a solder pad on a surface of a first carrier; forming a metal film, which covers the solder pad and which extends to a bump pad forming region; forming a circuit layer and a circuit pattern, which are electrically connected with the metal film, on a surface of the first carrier; pressing the first carrier and an insulator such that a surface of the first carrier and the insulator faces each other; and removing the first carrier. Utilizing this method, the amount of solder for the contacting of a flip chip can be adjusted, and solder can be filled inside the board, so that after installing a chip, the overall thickness of the package can be reduced.
Abstract:
A storage system includes a host and a storage device. The storage device includes a device controller and a device interface. The device controller is configured to generate interface idle time information in response to a command received from a host, the interface idle time information being determined based on an estimated time to execute at least one operation at the memory storage device. The device interface is configured to output the interface idle time information to the host.
Abstract:
A printed circuit board having a metal bump, including: an upper circuit layer including a circuit pattern embedded in an upper part of an insulating layer, the circuit pattern being made of electroconductive metal; wherein the metal bump is integrally formed with the circuit pattern and protruding from the circuit pattern and above the insulating layer.
Abstract:
Provided is an optical device with improved phase shift and propagation loss of light without decreasing the dynamic characteristics of the optical device. The optical device includes a first semiconductor layer which is doped with a first type of conductive impurities and has a uniform thickness; a gate insulating layer which has a shape and is formed on a portion of the first semiconductor layer and has a thin center portion; and a second semiconductor layer which covers an upper surface of the gate insulating layer and is doped with a second type of conductive impurities opposite to the first type of conductive type impurities.
Abstract:
Provided is an electro-optic device. The electro-optic device includes an input Y-branch comprising a first input branch and a second input branch, an output Y-branch comprising a first output branch and a second output branch, a first optical modulator and a second optical modulator connected in series between the first input branch and the first output branch, and a third optical modulator connecting the second input branch to the second output branch. The first optical modulator comprises a PIN diode, and each of the second optical modulator and the third optical modulator comprises a PN diode.