Abstract:
Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.
Abstract:
The present invention proposes a semiconductor light-emitting device having an axis of symmetry, the device including two or more laser diodes, each of the laser diodes has an axis of symmetry, wherein the laser diodes are arranged in series on the axis of symmetry of the light-emitting device in such a way that their axes of symmetry coincide, wherein faces of the laser diodes are connected so that they are in electric and mechanic contact and form a bar of the laser diodes, a directional pattern of radiation thereof has an axis of symmetry coinciding with the axis of symmetry of the light-emitting device. The proposed light-emitting device can be used in laser lamps of white light for exciting phosphors since it provides a high degree of flare of cylindrical surfaces.
Abstract:
A method of characterizing a monolithic tunable mid-infrared laser including a heterogeneous quantum cascade active region together with a least first and a second tunable integrated distributed feedback gratings, the method including operating the laser while tuning the first grating through its full tuning range, while holding the reflectivity function of the second grating constant, then operating the laser while tuning the second grating through its full tuning range, while holding the reflectivity function of the first grating constant.
Abstract:
A semiconductor optical device includes an active layer, the active layer including a plurality of quantum well layers having gain peak wavelengths different from one another in a layering direction thereof, and a plurality of barrier layers, wherein the quantum well layers and the barrier layers are alternately layered over each other, and an n-type dopant has been added in the plurality of quantum well layers having gain peak wavelengths different from one another and in the plurality of barrier layers.
Abstract:
Laser diodes formed on a common substrate with layers of suitable thickness and refractive indices produce output beams that are coherently coupled. A phase mask can be situated to produce phase differences in one or more of the output beams to produce a common wavefront phase. The phase-corrected beams propagate with reduced angular divergence than conventional lasers that are not coherently coupled, and the coherently coupled laser diodes can provide higher beam brightness, enhanced beam parameter product, and superior power coupled into doped fibers in fiber lasers.
Abstract:
A semiconductor laser module includes a semiconductor laser element outputting a laser light; an optical fiber; an optical component disposed at an outer periphery of the optical fiber and fixing the optical fiber; a first-fixing agent fastening the optical component and the optical fiber; a light-absorbing element disposed at an outer periphery of the optical component and fixing the optical component; a first light-blocking portion disposed between an end into which the laser light is incident of the optical fiber and the optical component; and a housing accommodating therein the semiconductor laser element, an end into which the laser light is incident of the optical fiber and the first light-blocking portion. The optical component has an optical transmittance at a wavelength of the laser light, and the light-absorbing element has an optical absorptivity at a wavelength of the laser light.
Abstract:
A laser diode arrangement having at least one semiconductor substrate, having at least two laser stacks each having an active zone and having at least one intermediate layer. The laser stacks and the intermediate layer are grown monolithically on the semiconductor substrate. The intermediate layer is arranged between the laser stacks. The active zone of the first laser stack can be actuated separately from the active zone of the at least one further laser stack.
Abstract:
Disclosed herein are multi-layered optically active regions for semiconductor light-emitting devices (LEDs) that incorporate intermediate carrier blocking layers, the intermediate carrier blocking layers having design parameters for compositions and doping levels selected to provide efficient control over the carrier injection distribution across the active regions to achieve desired device injection characteristics. Examples of embodiments discussed herein include, among others: a multiple-quantum-well variable-color LED operating in visible optical range with full coverage of RGB gamut, a multiple-quantum-well variable-color LED operating in visible optical range with an extended color gamut beyond standard RGB gamut, a multiple-quantum-well light-white emitting LED with variable color temperature, and a multiple-quantum-well LED with uniformly populated active layers.
Abstract:
The monolithic integration of optically-pumped and electrically-injected III-nitride light-emitting devices. This structure does not involve the growth of p-type layers after an active region for a first III-nitride light-emitting device, and thus avoids high temperature growth steps after the fabrication of the active region for the first III-nitride light emitting device. Since electrical injection in such a structure cannot be possible, a second III-nitride light-emitting device is used to optically pump the first III-nitride light emitting device. This second III-nitride light emitting device emits light at a shorter wavelength region of the optical spectrum than the first III-nitride light emitting device, so that it can be absorbed by the active region of the first III-nitride light-emitting device, which in turn emits light at a longer wavelength region of the optical spectrum than the second III-nitride light emitting device.
Abstract:
A method for manufacturing a laser diode device includes providing a substrate having a surface region and forming epitaxial material overlying the surface region, the epitaxial material comprising an n-type cladding region, an active region comprising at least one active layer overlying the n-type cladding region, and a p-type cladding region overlying the active layer region. The epitaxial material is patterned to form a plurality of dice, each of the dice corresponding to at least one laser device, characterized by a first pitch between a pair of dice, the first pitch being less than a design width. Each of the plurality of dice are transferred to a carrier wafer such that each pair of dice is configured with a second pitch between each pair of dice, the second pitch being larger than the first pitch.