摘要:
A thin wafer handling structure includes a semiconductor wafer, a release layer that can be released by applying energy, an adhesive layer that can be removed by a solvent, and a carrier, where the release layer is applied on the carrier by coating or laminating, the adhesive layer is applied on the semiconductor wafer by coating or laminating, and the semiconductor wafer and the carrier is bonded together with the release layer and the adhesive layer in between. The method includes applying a release layer on a carrier, applying an adhesive layer on a semiconductor wafer, bonding the carrier and the semiconductor wafer, releasing the carrier by applying energy on the release layer, e.g. UV or laser, and cleaning the semiconductor's surface by a solvent to remove any residue of the adhesive layer.
摘要:
A variable frequency microwave (VFM) device and a method for rectifying wafer warpage are provided. The variable frequency microwave (VFM) device includes a heater installed in the top wall of the chamber; and a cooler installed in proximity to the bottom wall of the chamber.
摘要:
The embodiments of bump and bump-on-trace (BOT) structures provide bumps with recess regions for reflowed solder to fill. The recess regions are placed in areas of the bumps where reflow solder is most likely to protrude. The recess regions reduce the risk of bump to trace shorting. As a result, yield can be improved.
摘要:
A method for forming a metal pillar bump structure is provided. In one embodiment, a passivation layer is formed over a semiconductor substrate and a conductive layer is formed over the passivation layer. A patterned and etched photoresist layer is provided above the conductive layer, the photoresist layer defining at least one opening therein. A metal layer is deposited in the at least one opening. Portions of the photoresist layer are etched along one or more interfaces between the photoresist layer and the metal layer to form cavities. A solder material is deposited in the at least one opening, the solder material filling the cavities and a portion of the opening above the metal layer. The remaining photoresist layer and the conductive layer not formed under the copper layer are removed. The solder material is then reflown to encapsulate the metal layer.
摘要:
A process for making a copper post with footing profile employs dual photoresist films of different photosensitivities and thicknesses on an under-bump-metallurgy (UBM) layer. After an exposure lithography process, a first opening with a substantially vertical sidewall is formed in a first photoresist film, and a second opening with a sloped sidewall is formed in a second photoresist film. The second opening has a top diameter and a bottom diameter greater than the top diameter, and the bottom diameter is greater than the diameter of the first opening. A conductive layer is then formed in the first opening and the second opening followed by removing the dual photoresist films.
摘要:
A conductive pillar structure for a die includes a passivation layer having a metal contact opening over a substrate. A bond pad has a first portion inside the metal contact opening and a second portion overlying the passivation layer. The second portion of the bond pad has a first width. A buffer layer over the bond pad has a pillar contact opening with a second width to expose a portion of the bond pad. A conductive pillar has a first portion inside the pillar contact opening and a second portion over the buffer layer. The second portion of the conductive pillar has a third width. A ratio of the second width to the first width is between about 0.35 and about 0.65. A ratio of the second width to the third width is between about 0.35 and about 0.65.
摘要:
A bump structure in a semiconductor device or a packing assembly includes an under-bump metallization (UBM) layer formed on a conductive pad of a semiconductor substrate. The UBM layer has a width greater than a width of the conductive pad.
摘要:
A method of forming a through silicon via (TSV) structure includes forming an interconnect pad over a substrate. An under layer is formed over the interconnect pad. A vertical conductive post is formed at least partially through the substrate. At least one dummy structure is formed at least partially through the under layer. A top pad is formed over the dummy structure and the vertical conductive post. The top pad covers a wider area than a cross section of the vertical conductive post. The interconnect pad is electrically connected to the top pad. The dummy structure connects the top pad and the under layer thereby fastening the top pad and the interconnect pad.
摘要:
The mechanisms of using an interposer frame to package a semiconductor die enables fan-out structures and reduces form factor for the packaged semiconductor die. The mechanisms involve using a molding compound to attach the semiconductor die to the interposer frame and forming a redistribution layer on one or both sides of the semiconductor die. The redistribution layer(s) in the package enables fan-out connections and formation of external connection structures. Conductive columns in the interposer frame assist in thermal management.
摘要:
A semiconductor device includes at least two conductive pads, one of the conductive pads being formed above another of the at least two conductive pads, and a redistribution layer extending from at least one of the conductive pads. The semiconductor device also includes a bump structure formed over the conductive pads and electrically coupled to the conductive pads.