摘要:
Aspects of the invention generally provide an apparatus and method for processing substrates using a multi-chamber processing system that is adapted to process substrates and analyze the results of the processes performed on the substrate. In one aspect of the invention, one or more analysis steps and/or pre-processing steps are performed on the substrate to provide data for processes performed on subsequent substrates. In one aspect of the invention, a system controller and one or more analysis devices are utilized to monitor and control a process chamber recipe and/or a process sequence to reduce substrate scrap due to defects in the formed device and device performance variability issues. Embodiments of the present invention also generally provide methods and a system for repeatably and reliably forming semiconductor devices used in a variety of applications.
摘要:
Aspects of the invention generally provide an apparatus and method for processing substrates using a multi-chamber processing system that is adapted to process substrates and analyze the results of the processes performed on the substrate. In one aspect of the invention, one or more analysis steps and/or precleaning steps are utilized to reduce the effect of queue time on device yield. In one aspect of the invention, a system controller and the one or more analysis chambers are utilized to monitor and control a process chamber recipe and/or a process sequence to reduce substrate scrap due to defects in the formed device and device performance variability issues. Embodiments of the present invention also generally provide methods and a system for repeatably and reliably forming semiconductor devices used in a variety of applications.
摘要:
In a first aspect, a method of forming an epitaxial film on a substrate is provided. The method includes (a) providing a substrate; (b) exposing the substrate to a silicon source and a carbon source so as to form a carbon-containing silicon epitaxial film; (c) encapsulating the carbon-containing silicon epitaxial film with an encapsulating film; and (d) exposing the substrate to Cl2 so as to etch the encapsulating film. Numerous other aspects are provided.
摘要:
The invention generally teaches a method for depositing a silicon film or silicon germanium film on a substrate comprising placing the substrate within a process chamber and heating the substrate surface to a temperature in the range from about 600° C. to about 900° C. while maintaining a pressure in the range from about 0.1 Torr to about 200 Torr. A deposition gas is provided to the process chamber and includes SiH4, an optional germanium source gas, an etchant, a carrier gas and optionally at least one dopant gas. The silicon film or the silicon germanium film is selectively and epitaxially grown on the substrate. One embodiment teaches a method for depositing a silicon-containing film with an inert gas as the carrier gas. Methods may include the fabrication of electronic devices utilizing selective silicon germanium epitaxial films.
摘要:
In one embodiment of the invention, a method for finishing or treating a silicon-containing surface is provided which includes removing contaminants and/or smoothing the surface contained on the surface by a slow etch process (e.g., about 100 Å/min) is provided which includes removing silicon-containing material to form a recess in a source/drain (S/D) area on the substrate. The silicon-containing surface is exposed to an etching gas that contains an etchant, preferably chlorine, a carrier gas and an optional silicon source.
摘要:
The invention generally teaches a method for depositing a silicon film or silicon germanium film on a substrate comprising placing the substrate within a process chamber and heating the substrate surface to a temperature in the range from about 600° C. to about 900° C. while maintaining a pressure in the range from about 0.1 Torr to about 200 Torr. A deposition gas is provided to the process chamber and includes SiH4, an optional germanium source gas, an etchant, a carrier gas and optionally at least one dopant gas. The silicon film or the silicon germanium film is selectively and epitaxially grown on the substrate. One embodiment teaches a method for depositing a silicon-containing film with an inert gas as the carrier gas. Methods may include the fabrication of electronic devices utilizing selective silicon germanium epitaxial films.
摘要:
Wafer-level package (semiconductor) devices are described that have a pillar structure that extends at least partially into a solder bump to mitigate thermal stresses to the solder bump. In implementations, the wafer-level package device may comprise an integrated circuit chip having a surface and a solder bump disposed over the surface. The wafer-level package device may also include a pillar structure disposed over the surface that extends at least partially into the solder bump.
摘要:
Semiconductor devices are described that have an extended under ball metallization configured to mitigate dielectric layer cracking due to stress, particularly stress caused by CTE mismatch during thermal cycling tests, dynamic deformation during drop tests, or cyclic bending tests, and so on. In an implementation, the semiconductor package devices include an integrated circuit chip having a solder ball and under ball metallization, formed on the integrated circuit chip, which is configured to receive the solder ball so that the solder ball and the under ball metallization have a contact area there between, wherein the area of the under ball metallization is area greater than the contact area.
摘要:
Embodiments provide methods for etching and depositing silicon materials on a substrate. In one example, the method includes heating a substrate containing a silicon-containing material to a temperature of about 800° C. or less and removing a portion of the silicon-containing material and a contaminant to reveal an exposed surface of the silicon-containing material during an etching process and depositing a silicon-containing layer on the exposed surface of the silicon-containing material during a deposition process. The method further provides conducting the etching and deposition processes in the same chamber and utilizing chlorine gas and a silicon source gas during the etching and deposition processes. In some examples, the silicon-containing material is removed at a rate within a range from about 2 Å per minute to about 20 Å per minute during the etching process.