Abstract:
A printed wiring board includes a base insulating layer including an insulating material, a conductor layer formed on the base insulating layer and including conductor pads, a coating insulating layer formed on the base insulating layer such that the coating insulating layer is covering the conductor layer and having opening portions exposing the conductor pads, respectively, and bumps formed on the conductor pads respectively such that each of the bumps includes an electroless plating metal layer formed on a respective one of the conductor pads and a solder layer formed on the electroless plating metal layer, the electroless plating metal layer having an upper end surface formed such that a central portion of the upper end surface is recessed relative to a peripheral portion of the upper end surface.
Abstract:
A wiring board includes a first resin insulating layer, conductor pads on the first insulating layer including first and second conductor pads, a second resin insulating layer on the first insulating layer covering the first and second pads, an outermost conductor layer on the second insulating layer including first and second outermost wiring layers, via conductors through the second insulating layer including a first via conductor connecting the first wiring layer and first pad and a second via conductor connecting the second wiring layer and second pad, and a solder resist layer on the second insulating layer such that the solder resist layer is covering the first wiring layer and has one or more openings exposing the second wiring layer. The first wiring layer includes first main metal, and the second wiring layer includes second main metal which is different from the first metal of the first wiring layer.
Abstract:
A wiring board includes a first insulation layer, first conductive patterns formed on the first insulation layer and including first mounting pads positioned to mount a semiconductor element, a wiring structure positioned in the first insulation layer and including a second insulation layer, second conductive patterns formed on the second insulation layer, and second mounting pads connected to the second conductive patterns, and third mounting pads formed on the first insulation layer above the second mounting pads and connected to the second mounting pads such that the third mounting pads are positioned to mount the semiconductor element and are set off from the second mounting pads toward the semiconductor element.
Abstract:
A substrate for mounting a semiconductor includes a first insulation layer having first and second surfaces on the opposite sides and having a penetrating hole penetrating through the first insulation layer, an electrode formed in the penetrating hole in the first insulation layer and having a protruding portion protruding from the second surface of the first insulation layer, a first conductive pattern formed on the first surface of the first insulation layer and connected to the electrode, a second insulation layer formed on the first surface of the first insulation layer and the first conductive pattern and having a penetrating hole penetrating through the second insulating layer, a second conductive pattern formed on the second insulation layer and for mounting a semiconductor element, and a via conductor formed in the penetrating hole in the second insulation layer and connecting the first and second conductive patterns.
Abstract:
A filter membrane includes a membrane having through holes that selectively separates specific material in processing medium, the membrane including first, second and third layers such that the first layer has first surface that is supplied with processing medium, the third layer has second surface on the opposite side of the first surface, and the second layer is formed between the first and third layers. The first layer includes first convex and concave portions, the third layer includes second convex and concave portions each having a larger area than each first concave portion, the second convex portions are formed to surround the second concave portions and connected to one another, the second layer has through holes connecting the second concave portions and first set of the first concave portions, and the first concave portions include second set in regions opposing the second convex portions that is connected to each other.
Abstract:
An electronic component includes an insulation layer, an alignment mark positioned on a first surface of the insulation layer, and an adhesive layer including an optically opaque agent and formed on the first surface of the insulation layer or a second surface of the insulation layer on the opposite side with respect to the first surface of the insulation layer. The adhesive layer has an opening portion formed at the position corresponding to the alignment mark such that the opening portion exposes the alignment mark directly or through the insulation layer.
Abstract:
A wiring substrate includes an insulating layer, a conductor pad that is formed on a surface of the insulating layer and is connected to a component such that the insulating layer has a component region that is covered by the component connected to the conductor pad, and an optical waveguide including a core part that transmits light and is positioned on an outer side of the component region of the insulating layer such that the core part has an end surface exposed and facing a component region side. The optical waveguide is positioned such that the end surface of the core part is adjacent to the component region.
Abstract:
A wiring substrate includes an insulating layer, a conductor layer formed on a surface of the insulating layer and including a conductor pad, a covering layer formed on the insulating layer and covering a portion of the insulating layer, an optical waveguide positioned on the surface of the insulating layer and including a core part, and a conductor post including plating metal and formed on the conductor pad such that the conductor post is penetrating through the covering layer and connected to a component. The insulating layer has a component region covered by the component when the component is connected to the conductor post, the core part has an end surface facing the opposite direction with respect to the insulating layer and exposed in the component region and a distance between the end surface and the surface of the insulating layer is greater than a thickness of the covering layer.
Abstract:
A printed wiring board for package-on-package includes a first insulating layer, a wiring layer including a conductor pattern and formed on first surface of the first insulating layer, a second insulating layer formed on first surface side of the first insulating layer, electrodes formed in through holes of the first insulating layer respectively such that the electrodes electrically connect to the conductor pattern and have exposed surfaces exposed from second surface of the first insulating layer, first pads formed on the second insulating layer and positioned to connect an IC chip in center portion of the second insulating layer, second pads formed on the second insulating layer and positioned in outer edge portion of the second insulating layer to connect a second printed wiring board, and via conductors formed in the second insulating layer such that the via conductors electrically connect the first and second pads to the conductor pattern.
Abstract:
A combined printed wiring board includes a multilayer printed wiring board having an outermost insulation layer, and a wiring film fixed to a portion of the outermost insulation layer of the multilayer printed wiring board. The wiring film includes dense-pitch pads formed on a semiconductor-mounting surface of the wiring film, the multilayer printed wiring board has sparse-pitch pads formed on a semiconductor-mounting surface of the multilayer printed wiring board, the dense-pitch pads are formed to facilitate electrical connection between a first semiconductor element and a second semiconductor element, and the sparse-pitch pads are formed to facilitate electrical connection between the multilayer printed wiring board and the first semiconductor element and/or the second semiconductor element.