摘要:
A micro filled material includes a binding material and optionally includes a number of particles. The binding material and the particles can be formed of any conductive or nonconductive material. Using such a micro filled via material, an electrical conductor is formed in a substrate for supporting one or more electronic components using the following steps: placing the micro filled via material between two conductive layers at various locations in a substrate at which an electrical conductor is to be formed; and optionally programming the micro filled via material to reduce the resistance of, or to form an electrical conductor.
摘要:
A structure includes a support layer formed of a conductive material, such as a sheet of copper. The support layer has a number of conductive islands isolated from other portions of the support layer by isolation gaps. The support layer is sandwiched between two compound layers each of which is formed of a dielectric layer having a number of via holes and conductive elements located in the via holes. The conductive elements are formed at predetermined locations such that a conductive element in each compound layer contacts a conductive island in the support layer. The structure also includes two conductive layers formed on the two respective compound layers such that a trace in a first conductive layer is coupled to a trace in a second conductive layer through two conductive elements in the respective two compound layers and an island in the support layer. Such a structure can be formed by a number of processes. For example, the support layer can be formed by etching a sheet of conductive material, the compound layers can be formed by placing a conductive paste in via holes in a dielectric layer, and the conductive layers can be formed by lamination followed by etching to form traces.
摘要:
An integrated circuit (IC) package substrate has a dielectric layer and a micro filled via formed substantially in the center of a hole in the dielectric layer. The IC package substrate has at least one chip bonding pad and one ball attach pad that are electrically coupled to each other by the micro filled via. The micro filled via is formed of a material called a "micro filled via material" that includes a binding material and optionally includes a number of particles (between 0%-90% by volume) dispersed in the binding material. The binding material can be any material, such as a polymer that is either conductive or nonconductive. The particles can be formed of any conductive material, such as a conductive polymer or a conductive metal (e.g. copper or gold). An electrical conductor can be originally formed simply by contact between conductive particles located adjacent to each other. In an optional step, the micro filled via is subjected to a programming current (in a step called "programming") to lower the resistance of an originally formed electrical conductor, or to originally form an electrical conductor by break down of a dielectric material. The IC package substrate can be formed in either a cavity up or a cavity down configuration.
摘要:
A structure includes a support layer formed of a conductive material, such as a sheet of copper. The support layer has a number of conductive islands isolated from other portions of the support layer by isolation gaps. The support layer is sandwiched between two compound layers each of which is formed of a dielectric layer having a number of via holes and conductive elements located in the via holes. The conductive elements are formed at predetermined locations such that a conductive element in each compound layer contacts a conductive island in the support layer. The structure also includes two conductive layers formed on the two respective compound layers such that a trace in a first conductive layer is coupled to a trace in a second conductive layer through two conductive elements in the respective two compound layers and an island in the support layer. Such a structure can be formed by a number of processes. For example, the support layer can be formed by etching a sheet of conductive material, the compound layers can be formed by placing a conductive paste in via holes in a dielectric layer, and the conductive layers can be formed by lamination followed by etching to form traces.
摘要:
An integrated circuit (IC) package substrate has a dielectric layer and a micro filled via formed substantially in the center of a hole in the dielectric layer. The IC package substrate has at least one chip bonding pad and one ball attach pad that are electrically coupled to each other by the micro filled via. The micro filled via is formed of a material called a "micro filled via material" that includes a binding material and optionally includes a number of particles (between 0%-90% by volume) dispersed in the binding material. The binding material can be any material, such as a polymer that is either conductive or nonconductive. The particles can be formed of any conductive material, such as a conductive polymer or a conductive metal (e.g. copper or gold). An electrical conductor can be originally formed simply by contact between conductive particles located adjacent to each other. In an optional step, the micro filled via is subjected to a programming current (in a step called "programming") to lower the resistance of an originally formed electrical conductor, or to originally form an electrical conductor by break down of a dielectric material. The IC package substrate can be formed in either a cavity up or a cavity down configuration.
摘要:
A device-under-test card includes a matrix of fuses and/or antifuses formed as part of a multi-layered structure. The matrix of fuses and/or antifuses can be electrically programmed to connect any one of first electrical contacts to any one of second electrical contacts and so allows the device-under-test card to act as a junction between burn-in board traces couplable to signal drivers and/or receivers and burn-in board traces couplable to terminals of a device-under-test. The device-under-test card also includes a discrete resistor or alternatively a resistor ladder that permits a terminal of a device-under-test to be coupled to a power or ground terminal or to any combination of resistances including a short, in addition or as an alternative to any one of various signal drivers and/or receivers.
摘要:
In one embodiment, the steps for forming an electrical conductor between conductive layers of a printed circuit board include the following steps: (1) applying a first dielectric material on a first conductive layer; (2) forming a number of via holes at each of the predetermined locations in the first dielectric material at which an electrical conductor is to be formed; (3) selectively applying a second dielectric material to at least fill each of the via holes, to form a composite dielectric layer; (4) applying a second conductive layer on the composite dielectric layer; (5) etching the first conductive layer to form a first electrode; (6) etching the second conductive layer to form a second electrode; and (7) applying a programming voltage across the second dielectric material in each of the via holes to form an electrical conductor in each of the via holes, each electrical conductor connecting an electrode in the first conductive layer to an electrode in the second conductive layer.
摘要:
A multilayered structure, such as a printed circuit board, includes a first conductive layer and a second conductive layer that are separated from each other by a dielectric layer. The dielectric layer is formed of a first material, such as a photoimagible polyimide and epoxy resin. The dielectric layer has a number of via holes that extend from the first conductive layer to the second conductive layer. The via holes are filled with a second material having a breakdown voltage less than a breakdown voltage of the first material included in the dielectric layer to form an antifuse. The second material in the via holes can be, for example, a conductive epoxy resin or a polymer loaded with conductive particles (also referred to as "conductive paste").
摘要:
A programming method in accordance with this invention partitions traces of a fuse matrix into groups wherein each group contains traces connected to fuses that are to remain intact. All of the traces in a group are connected to a first voltage so that the fuses between traces in the group are subjected to minimal currents. In one embodiment, all of the traces that are not in the group connected to the first voltage are connected to a second voltage such that a programming current passes through fuses to be programmed. In an alternative embodiment, traces in a second group are connected to the second voltage and all of the remaining traces are shorted to each other.
摘要:
Two types of programmable elements, fuses and antifuses, are disclosed for forming an electrically programmable socket adapter in one embodiment. The socket adapter can be used for interconnecting an electronic component having terminals in a first configuration to electrical contacts in printed circuit board.