摘要:
A method of manufacturing integrated circuits wherein a conductive structure in a topmost semiconductive layer of an integrated circuit is provided having a thickness greater than or equal to 1.5 &mgr;m. The thickness of the conductive structure is sufficiently great as to effectively protect any layers beneath the topmost semiconductive layer from damage from pressure, such as pressure applied by testing probes. In a preferred embodiment, traditional aluminum TD leveling is discarded in favor of gold deposited upon the thickened conductive layer.
摘要:
A three-dimensional package consisting of a plurality of folded integrated circuit chips (100, 110, 120) is described wherein at least one chip provides interconnect pathways for electrical connection to additional chips of the stack, and at least one chip (130) is provided with additional interconnect wiring to a substrate (500), package or printed circuit board. Further described, is a method of providing a flexible arrangement of interconnected chips that are folded over into a three-dimensional arrangements to consume less aerial space when mounted on a substrate, second-level package or printed circuit board.
摘要:
A method and structure for a fuse structure comprises an insulator layer, a plurality of fuse electrodes extending through the insulator layer to an underlying wiring layer, an electroplated fuse element connected to the electrodes, and an interface wall. The fuse element is positioned external to the insulator, with a gap juxtaposed between the insulator and the fuse element. The interface wall further comprises a first side wall, a second side wall, and an inner wall, wherein the inner wall is disposed within the gap. The fuse electrodes are diametrically opposed to one another, and the fuse element is perpendicularly disposed above the fuse electrodes. The fuse element is either electroplatted, electroless plated, or is an ultra thin fuse.
摘要:
Methods of forming a conductive structure on a substrate prior to packaging, and a test probe structure generated according to the method, are disclosed. The conductive structure includes a high aspect ratio structure formed by injected molded solder. The invention can be applied to form passive elements and interconnects on a conventional semiconductor substrate after the typical BEOL, and prior to packaging. The method may provide better electromigration characteristics, lower resistivity, and higher Q factors for conductive structures. In addition, the method is backwardly compatible and customizable.
摘要:
A process is described for forming a common input-output (I/O) site that is suitable for both wire-bond and solder bump flip chip connections, such as controlled-collapse chip connections (C4). The present invention is particularly suited to semiconductor chips that use copper as the interconnection material, in which the soft dielectrics used in manufacturing such chips are susceptible to damage due to bonding forces. The present invention reduces the risk of damage by providing site having a noble metal on the top surface of the pad, while providing a diffusion barrier to maintain the high conductivity of the metal interconnects. Process steps for forming an I/O site within a substrate are reduced by providing a method for selectively depositing metal layers in a feature formed in the substrate. Since the I/O sites of the present invention may be used for either wire-bond or solder bump connections, this provides increased flexibility for chip interconnection options, while also reducing process costs.
摘要:
A method and structure for a fuse structure comprises an insulator layer, a plurality of fuse electrodes extending through the insulator layer to an underlying wiring layer, an electroplated fuse element connected to the electrodes, and an interface wall. The fuse element is positioned external to the insulator, with a gap juxtaposed between the insulator and the fuse element. The interface wall further comprises a first side wall, a second side wall, and an inner wall, wherein the inner wall is disposed within the gap. The fuse electrodes are diametrically opposed to one another, and the fuse element is perpendicularly disposed above the fuse electrodes. The fuse element is either electroplatted, electroless plated, or is an ultra thin fuse.
摘要:
A microelectronic assembly having a through hole extending through a first wafer (or chip) and a second wafer (or chip) are provided. The first and second wafers (or chips) have confronting faces and metallic features at the faces which are joined together to assemble the first and second wafers (or chips) leaving a gap between the confronting faces. A hole is etched in the first wafer (or chip), then material is sputtered to form a wall of material in the gap between wafers (or chips). Etching continues to extend the hole into or through the second wafer (or chip). The hole is filled to form a substantially vertical through silicon conductive via.
摘要:
Resistors that avoid the problems of miniaturization of semiconductor devices and a related method are disclosed. In one embodiment, a resistor includes a planar resistor material that extends vertically within at least one metal layer of a semiconductor device. In another embodiment, a resistor includes a resistor material layer extending between a first bond pad and a second bond pad of a semiconductor device. The two embodiments can be used alone or together. A related method for generating the resistors is also disclosed.
摘要:
A method of forming wire bonds in (I/C) chips comprising: providing an I/C chip having a conductive pad for a wire bond with at least one layer of dielectric material overlying the pad; forming an opening through the dielectric material exposing a portion of said pad. Forming at least a first conductive layer on the exposed surface of the pad and on the surface of the opening. Forming a seed layer on the first conductive layer; applying a photoresist over the seed layer; exposing and developing the photoresist revealing the surface of the seed layer surrounding the opening; removing the exposed seed layer; removing the photoresist material in the opening revealing the seed layer. Plating at least one second layer of conductive material on the seed layer in the opening, and removing the first conductive layer on the dielectric layer around the opening. The invention also includes the resulting structure.
摘要:
A method of fabricating and the structure of a micro-electromechanical switch (MEMS) device provided with self-aligned spacers or bumps is described. The spacers are designed to have an optimum size and to be positioned such that they act as a detent mechanism for the switch to minimize problems caused by stiction. The spacers are fabricated using standard semiconductor techniques typically used for the manufacture of CMOS devices. The present method of fabricating these spacers requires no added depositions, no extra lithography steps, and no additional etching.