摘要:
Methods and compositions for electro-chemical-mechanical polishing (e-CMP) of silicon chip interconnect materials, such as copper, are provided. The methods include the use of compositions according to the invention in combination with pads having various configurations.
摘要:
An inductor and a method of forming and the inductor, the method including: (a) providing a semiconductor substrate; (b) forming a dielectric layer on a top surface of the substrate; (c) forming a lower trench in the dielectric layer; (d) forming a resist layer on a top surface of the dielectric layer; (e) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and (f) completely filling the lower trench at least partially filling the upper trench with a conductor in order to form the inductor. The inductor including a top surface, a bottom surface and sidewalls, a lower portion of said inductor extending a fixed distance into a dielectric layer formed on a semiconductor substrate and an upper portion extending above said dielectric layer; and means to electrically contact said inductor.
摘要:
An inductor and a method of forming and the inductor, the method including: (a) forming a dielectric layer on a top surface of a substrate; (b) forming a lower trench in the dielectric layer; (c) forming a resist layer on a top surface of the dielectric layer; (d) forming an upper trench in the resist layer, the upper trench aligned to the lower trench, a bottom of the upper trench open to the lower trench; and (e) completely filling the lower trench at least partially filling the upper trench with a conductor in order to form the inductor. The inductor including a top surface, a bottom surface and sidewalls, a lower portion of said inductor extending a fixed distance into a dielectric layer formed on a semiconductor substrate and an upper portion extending above said dielectric layer; and means to electrically contact said inductor.
摘要:
A process is described for the fabrication of submicton interconnect structures for integrated circuit chips. Void-free and seamless conductors are obtained by electroplating Cu from baths that contain additives and are conventionally used to deposit level, bright, ductile, and low-stress Cu metal. The capability of this method to superfill features without leaving voids or seams is unique and superior to that of other deposition approaches. The electromigration resistance of structures making use of CU electroplated in this manner is superior to the electromigration resistance of AlCu structures or structures fabricated using Cu deposited by methods other than electroplating.
摘要:
A conducting material comprising: a conducting core region comprising copper and from 0.001 atomic percent to 0.6 atomic percent of one or more metals selected from iridium, osmium and rhenium; and an interfacial region. The interfacial region comprises at least 80 atomic percent or greater of the one or more metals. The invention is also directed to a method of making a conducting material comprising: providing an underlayer; contacting the underlayer with a seed layer, the seed layer comprising copper and one or more metals selected from iridium, osmium and rhenium; depositing a conducting layer comprising copper on the seed layer, and annealing the conducting layer at a temperature sufficient to cause grain growth in the conducting layer, yet minimize the migration of the one or more alloy metals from the seed layer to the conducting layer. The method further comprises polishing the conducting layer to provide a polished copper surface material, and annealing the polished copper surface material at a temperature to cause migration of the one or more metals from the seed layer to the polished surface to provide an interfacial region in contact with a copper conductor core region. The interfacial region and the copper conductor core region comprise the one or more metals.
摘要:
A low-k dielectric for use as an interlayer for an interconnect structure is provided. The dielectric of the present invention is an alkaline boron silicate glass which when formulated in certain compositional ranges can undergo spinodal decomposition when processed using certain thermal profiles. Spinodal decomposition is a chemical and physical separation of the silicate glass into a distinct interpenetrating microstructure which contains a substantially pure silicon dioxide network and a boron-rich network. The dimension (i.e., scale), and the amount of separation can be controlled through compositional and thermal control during the processing of the silicate glass.
摘要:
A structure and methods of fabricating the structure. The structure comprising: a trench in a dielectric layer; an electrically conductive liner, an electrically conductive core conductor and an electrically conductive fill material filling voids between said liner and said core conductor.
摘要:
Improved mechanical and adhesive strength and resistance to breakage of copper integrated circuit interconnections is obtained by forming a copper alloy in a copper via/wiring connection in an integrated circuit while minimizing adverse electrical effects of the alloy by confining the alloy to an interfacial region of said via/wiring connection and not elsewhere by a barrier which reduces or substantially eliminates the thickness of alloy in the conduction path. The alloy location and composition are further stabilized by reaction of all available alloying material with copper, copper alloys or other metals and their alloys.
摘要:
A method for far back end of line (FBEOL) semiconductor device formation includes forming a terminal copper pad in an upper level of a semiconductor wafer, forming an insulating stack over the terminal copper pad, and patterning and opening a terminal via within a portion of the insulating stack so as to leave a bottom cap layer of the insulating stack protecting the terminal copper pad. An organic passivation layer is formed and patterned over the top of the insulating stack, and the bottom cap layer over the terminal copper pad is removed. A ball limiting metallurgy (BLM) stack is deposited over the organic passivation layer and terminal copper pad, and a solder ball connection is formed on a patterned portion of the BLM stack.
摘要:
A method of selectively altering material properties of a substrate in one region while making a different alteration of material properties in an adjoining region is provided. The method includes selectively masking a first portion of the substrate during a first exposure and selectively masking a second portion of the substrate during a second exposure. Additionally, a mask may be formed having more than one thickness where each thickness will selectively reduce the amount of energy from a blanket exposure of the substrate thereby allowing a substrate to receive different levels of energy dosage in a single blanket exposure.