摘要:
Embodiments of the present disclosure are directed towards an integrated circuit (IC) package having first and second dies with first and second input/output (I/O) interconnect structures, respectively. The IC package may include a bridge having first and second electrical routing features coupled to a portion of the first and second I/O interconnect structures, respectively. In embodiments, the first and second electrical routing features may be disposed on one side of the bridge; and third electrical routing features may be disposed on an opposite side. The first and second electrical routing features may be configured to route electrical signals between the first die and the second die and the third electrical routing features may be configured to route electrical signals between the one side and the opposite side. The first die, the second die, and the bridge may be embedded in electrically insulating material. Other embodiments may be described and/or claimed.
摘要:
Underfill material flow control for reduced die-to-die spacing in semiconductor packages and the resulting semiconductor packages are described. In an example, a semiconductor apparatus includes first and second semiconductor dies, each having a surface with an integrated circuit thereon coupled to contact pads of an uppermost metallization layer of a common semiconductor package substrate by a plurality of conductive contacts, the first and second semiconductor dies separated by a spacing. A barrier structure is disposed between the first semiconductor die and the common semiconductor package substrate and at least partially underneath the first semiconductor die. An underfill material layer is in contact with the second semiconductor die and with the barrier structure, but not in contact with the first semiconductor die.
摘要:
Methods of fabricating a microelectronic device comprising forming a microelectronic substrate having a plurality microelectronic device attachment bond pads and at least one interconnection bond pad formed in and/or on an active surface thereof, attaching a microelectronic device to the plurality of microelectronic device attachment bond pads, forming a mold chase having a mold body and at least one projection extending from the mold body, wherein the at least one projection includes at least one sidewall and a contact surface, contacting the mold chase projection contact surface to a respective microelectronic substrate interconnection bond pad, disposing a mold material between the microelectronic substrate and the mold chase, and removing the mold chase to form at least one interconnection via extending from a top surface of the mold material to a respective microelectronic substrate interconnection bond pad.
摘要:
Disclosed herein are microelectronic structures including bridges, as well as related assemblies and methods. In some embodiments, a microelectronic structure may include a substrate and a bridge.
摘要:
Methods of fabricating a microelectronic device comprising forming a microelectronic substrate having a plurality microelectronic device attachment bond pads and at least one interconnection bond pad formed in and/or on an active surface thereof, attaching a microelectronic device to the plurality of microelectronic device attachment bond pads, forming a mold chase having a mold body and at least one projection extending from the mold body, wherein the at least one projection includes at least one sidewall and a contact surface, contacting the mold chase projection contact surface to a respective microelectronic substrate interconnection bond pad, disposing a mold material between the microelectronic substrate and the mold chase, and removing the mold chase to form at least one interconnection via extending from a top surface of the mold material to a respective microelectronic substrate interconnection bond pad.
摘要:
Embodiments of the present disclosure are directed towards electro-magnetic interference (EMI) shielding techniques and configurations. In one embodiment, an apparatus includes a first substrate, a die having interconnect structures coupled with the first substrate to route input/output (I/O) signals between the die and the first substrate and a second substrate coupled with the first substrate, wherein the die is disposed between the first substrate and the second substrate and at least one of the first substrate and the second substrate include traces configured to provide electro-magnetic interference (EMI) shielding for the die. Other embodiments may be described and/or claimed.
摘要:
Die warpage is controlled for the assembly of thin dies. In one example, a device having a substrate on a back side and components in front side layers is formed. A backside layer is formed over the substrate, the layer resisting warpage of the device when the device is heated. The device is attached to a substrate by heating.
摘要:
A method, system, and apparatus, the apparatus including a metal layer on silicon, photo-resist material disposed on the metal layer, a bump pad reservoir adjacent to the metal layer, a quantity of interconnect metal disposed in the bump pad reservoir, and a resist opening in resist material disposed on a surface of the bump metal and adjacent the interconnect metal. The resist opening may be wider at an open end thereof than at an end in contact with the interconnect metal.
摘要:
Die warpage is controlled for the assembly of thin dies. In one example, a device having a substrate on a back side and components in front side layers is formed. A backside layer is formed over the substrate, the layer resisting warpage of the device when the device is heated. The device is attached to a substrate by heating.
摘要:
A method and apparatus for mounting semiconductor die and integral heat spreader are disclosed. In one embodiment, thermal expansion of the integral heat spreader is restricted by physical constraints during the process of heating interface material that bonds the integral heat spreader and semiconductor die together. In an alternative embodiment, thermal expansion of the integral hat spreader is restricted by applying an external compressive force to the integral heat spreader while heating interface material that bonds the integral heat spreader and semiconductor die together.