摘要:
A semiconductor device and a method of manufacturing a semiconductor device are disclosed. An embodiment comprises forming a bump on a die, the bump having a solder top, melting the solder top by pressing the solder top directly on a contact pad of a support substrate, and forming a contact between the die and the support substrate.
摘要:
In one embodiment a method for manufacturing a semiconductor device comprises arranging a wafer on a carrier, the wafer comprising singulated chips; bonding the singulated chips to a support wafer, and removing the carrier.
摘要:
A module and a method for manufacturing a module are disclosed. An embodiment of a module includes a first semiconductor device, a frame arranged on the first semiconductor device, the frame including a cavity, and a second semiconductor device arranged on the frame wherein the second semiconductor device seals the cavity.
摘要:
A module and a method for manufacturing a module are disclosed. An embodiment of a module comprises a first semiconductor device, a frame arranged on the first semiconductor device, the frame comprising a cavity, and a second semiconductor device arranged on the frame wherein the second semiconductor device seals the cavity.
摘要:
In one embodiment a method for manufacturing a semiconductor device comprises arranging a wafer on a carrier, the wafer comprising singulated chips; bonding the singulated chips to a support wafer, and removing the carrier.
摘要:
A method for producing a semiconductor device having a sidewall insulation includes providing a semiconductor body having a first side and a second side lying opposite the first side. At least one first trench is at least partly filled with insulation material proceeding from the first side in the direction toward the second side into the semiconductor body. The at least one first trench is produced between a first semiconductor body region for a first semiconductor device and a second semiconductor body region for a second semiconductor device. An isolating trench extends from the first side of the semiconductor body in the direction toward the second side of the semiconductor body between the first and second semiconductor body regions in such a way that at least part of the insulation material of the first trench adjoins at least a sidewall of the isolating trench. The second side of the semiconductor body is partly removed as far as the isolating trench.
摘要:
A MEMS structure includes a backplate, a membrane, and an adjustable ventilation opening configured to reduce a pressure difference between a first space contacting the membrane and a second space contacting an opposite side of the membrane. The adjustable ventilation opening is passively actuated as a function of the pressure difference between the first space and the second space.
摘要:
A semiconductor structure including a substrate, a device layer and a contact arranged on the substrate, comprises an ESD protective means, arranged between the substrate and the contact, such, that in the ESD case a breakthrough from the ESD protective means to the contact occurs.
摘要:
The semiconductor device includes a semiconductor body having a first and an opposite second main surface and side faces connecting the main surfaces, a circuit region in the semiconductor body adjacent to the first main surface, having a circuit contact terminal, a metallization region extending from the circuit contact terminal on the first main surface onto a side face of the semiconductor body to provide an exposed contacting region on the side face of the semiconductor body, and an insulation layer arranged between the metallization region and the semiconductor body, the insulation layer having an opening for electrically connecting the circuit contact terminal to the metallization region.
摘要:
A MEMS structure includes a backplate, a membrane, and an adjustable ventilation opening configured to reduce a pressure difference between a first space contacting the membrane and a second space contacting an opposite side of the membrane. The adjustable ventilation opening is passively actuated as a function of the pressure difference between the first space and the second space.