Abstract:
A method includes placing an underfill-shaping cover on a package component of a package, with a device die of the package extending into an opening of the underfill-shaping cover. An underfill is dispensed into the opening of the underfill-shaping cover. The underfill fills a gap between the device die and the package component through capillary. The method further includes, with the underfill-shaping cover on the package component, curing the underfill. After the curing the underfill, the underfill-shaping cover is removed from the package.
Abstract:
A package includes a first package component having a top surface, a second package component bonded to the top surface of the first package component, and a plurality of electrical connectors at the top surface of the first package component. A molding material is over the first package component and molding the second package component therein. The molding material includes a first portion overlapping the second package component, wherein the first portion includes a first top surface, and a second portion encircling the first portion and molding bottom portions of the plurality of electrical connectors therein. The second portion has a second top surface lower than the first top surface.
Abstract:
Methods and apparatus for an interposer with dams used in packaging dies are disclosed. An interposer may comprise a metal layer above a substrate. A plurality of dams may be formed above the metal layer around each corner of the metal layer. Dams may be formed on both sides of the interposer substrate. A dam surrounds an area where connectors such as solder balls may be located to connect to other packages. A non-conductive dam may be formed above the dam. An underfill may be formed under the package connected to the connector, above the metal layer, and contained within the area surrounded by the dams at the corner, so that the connectors are well protected by the underfill. Such dams may be further formed on a printed circuit board as well.
Abstract:
A device comprises a bottom package mounted on a printed circuit board, wherein the bottom package comprises a plurality of first bumps formed between the bottom package and the printed circuit board, a first underfill layer formed between the printed circuit board and the bottom package, a semiconductor die mounted on the bottom package and a top package bonded on the bottom package, wherein the top package comprises a plurality of second bumps and the top package and the bottom package form a ladder shaped structure. The device further comprises a second underfill layer formed between the bottom package and the top package, wherein the second underfill layer is formed of a same material as the first underfill layer.
Abstract:
A chip scale semiconductor device comprises a semiconductor die, a first bump and a second bump. The first bump having a first diameter and a first height is formed on an outer region of the semiconductor die. A second bump having a second diameter and a second height is formed on an inner region of the semiconductor die. The second diameter is greater than the first diameter while the second height is the same as the first height. By changing the shape of the bump, the stress and strain can be redistributed through the bump. As a result, the thermal cycling reliability of the chip scale semiconductor device is improved.
Abstract:
Pellicle-mask systems for advanced lithography, such as extreme ultraviolet lithography, are disclosed herein. An exemplary pellicle-mask system includes a mask having an integrated circuit (IC) pattern, a pellicle membrane, and a pellicle frame. The pellicle frame has a first surface attached to the pellicle membrane and a second surface opposite the first surface attached to the mask, such that the IC pattern of the mask is positioned within an enclosed space defined by the mask, the pellicle membrane, and the pellicle frame. A void is defined between the pellicle frame and the mask, where the void is defined by a portion of the second surface of the pellicle membrane not attached to the mask. The void is not in communication with the enclosed space and is not in communication with an exterior space of the pellicle-mask system.
Abstract:
The present disclosure provides an apparatus for a semiconductor lithography process in accordance with some embodiments. The apparatus includes a pellicle membrane, a pellicle frame attached to the pellicle membrane. The pellicle frame has a surface that defines at least one groove. The apparatus further includes a substrate that is in contact with the surface of the pellicle frame such that the grove is positioned between the pellicle frame and the substrate.
Abstract:
An embodiment apparatus includes a dielectric layer in a die, a conductive trace in the dielectric layer, and a protrusion bump pad on the conductive trace. The protrusion bump pad at least partially extends over the dielectric layer, and the protrusion bump pad includes a lengthwise axis and a widthwise axis. A ratio of a first dimension of the lengthwise axis to a second dimension of the widthwise axis is about 0.8 to about 1.2
Abstract:
A chip includes a semiconductor substrate, an electrical connector over the semiconductor substrate, and a molding compound molding a lower part of the electrical connector therein. A top surface of the molding compound is lower than a top end of the electrical connector. A recess extends from the top surface of the molding compound into the molding compound.
Abstract:
An embodiment apparatus includes a dielectric layer in a die, a conductive trace in the dielectric layer, and a protrusion bump pad on the conductive trace. The protrusion bump pad at least partially extends over the dielectric layer, and the protrusion bump pad includes a lengthwise axis and a widthwise axis. A ratio of a first dimension of the lengthwise axis to a second dimension of the widthwise axis is about 0.8 to about 1.2