摘要:
A method of design of a circuit board enabling high density conductor lines to be drawn efficiently. A rats nest is formed by connecting pads to which terminals of an electronic device are connected and external connection terminals by lines. A region with the highest density of lines of the rats nest is then selected and design rules relating to routes and dimensions of conductor lines are set in the region with the highest density of lines of the rats nest. Conductor lines are then laid at the region with the highest density of lines of the rats nest, and whether or not the conductor lines can be laid at the region with the highest density of lines of the rats nest is confirmed. Setting of the design rules and laying of conductor lines are if the conductor lines cannot be laid, and the conductor lines of the remaining regions are laid by the set design rules if the conductor lines can be laid.
摘要:
A method of design of a circuit board enabling high density conductor lines to be drawn efficiently. A rats nest is formed by connecting pads to which terminals of an electronic device are connected and external connection terminals by lines. A region with the highest density of lines of the rats nest is then selected and design rules relating to routes and dimensions of conductor lines are set in the region with the highest density of lines of the rats nest. Conductor lines are then laid at the region with the highest density of lines of the rats nest, and whether or not the conductor lines can be laid at the region with the highest density of lines of the rats nest is confirmed. Setting of the design rules and laying of conductor lines are if the conductor lines cannot be laid, and the conductor lines of the remaining regions are laid by the set design rules if the conductor lines can be laid.
摘要:
A semiconductor device, includes a supporting board; and a semiconductor element mounted on a first main surface of the supporting board. The supporting board includes a first electrode formed on the first main surface, a second electrode formed on a second main surface, and an opening or notch forming part. A first electrode pad of the semiconductor element faces and is connected to the first electrode of the supporting board. A second electrode pad of the semiconductor element and the second electrode of the supporting board are electrically connected via the opening or notch forming part.
摘要:
A semiconductor device of the invention includes a substrate in which a power-supply electrode and a ground electrode are provided. A first semiconductor chip is disposed over the substrate and has a first conductor layer formed on a surface facing a second semiconductor chip. A second conductor layer is disposed over the first semiconductor chip and has a second conductor layer formed on a surface facing the first semiconductor chip. And an adhesive layer is disposed between the first conductor layer and the second conductor layer and bonds together the first semiconductor chip and the second semiconductor chip. In the semiconductor device, the adhesive layer and the first and second conductor layers function as a capacitor.
摘要:
A semiconductor device of the invention includes a substrate in which a power-supply electrode and a ground electrode are provided. A first semiconductor chip is disposed over the substrate and has a first conductor layer formed on a surface facing a second semiconductor chip. A second conductor layer is disposed over the first semiconductor chip and has a second conductor layer formed on a surface facing the first semiconductor chip. And an adhesive layer is disposed between the first conductor layer and the second conductor layer and bonds together the first semiconductor chip and the second semiconductor chip. In the semiconductor device, the adhesive layer and the first and second conductor layers function as a capacitor.
摘要:
A semiconductor device includes a substrate provided with a plurality of leads, a face-down semiconductor element provided on one surface of the substrate, a first stacked semiconductor element and a second stacked semiconductor element provided on another surface of the substrate and connected to the substrate by wires, and an extended wiring mechanism for connecting electrodes of the face-down semiconductor element and electrodes of the first and second semiconductor elements. The connected electrodes are equi-electrodes whose electrical characteristics are equal.
摘要:
A semiconductor chip is secured in a state deformed into a substantially cylinder shape by a coating material formed on its surface. The deformed semiconductor chip is flip-chip connected to an interposer and sealed with sealing resin onto the interposer. Solder balls are provided, as external terminals, on the other side of the interposer.
摘要:
A semiconductor chip is secured in a state deformed into a substantially cylinder shape by a coating material formed on its surface. The deformed semiconductor chip is flip-chip connected to an interposer and sealed with sealing resin onto the interposer. Solder balls are provided, as external terminals, on the other side of the interposer.
摘要:
In a stacked semiconductor device which has a plurality of semiconductor chips of desired sizes stacked as one package, a first semiconductor chip is mounted on a flexible printed wiring board provided with external connecting terminals. A printed circuit board is placed and mounted on the first semiconductor chip by flip-chip bonding. A second semiconductor chip is secured onto the printed circuit board. The second semiconductor chip is connected to the flexible printed wiring board by wire bonding. The first semiconductor chip is connected to the flexible printed wiring board by wire bonding via the printed circuit board.
摘要:
In a stacked semiconductor device which has a plurality of semiconductor chips of desired sizes stacked as one package, a first semiconductor chip is mounted on a flexible printed wiring board provided with external connecting terminals. A printed circuit board is placed and mounted on the first semiconductor chip by flip-chip bonding. A second semiconductor chip is secured onto the printed circuit board. The second semiconductor chip is connected to the flexible printed wiring board by wire bonding. The first semiconductor chip is connected to the flexible printed wiring board by wire bonding via the printed circuit board.