摘要:
A three dimensional packaging approach reduces the overall footprint for interconnecting multiple semiconductor die. An three-dimensional folded module (10) produces a final package having a footprint size reduced by an approximate factor of four when compared to conventional electronic packaging. The module has a protective covering such as a cap (62) or a sealant (64) as a moisture barrier. Thus, high integration using flexible appendages (15, 25, 35, and 45) attached to a rigid substrate (12) and singularly folded above the substrate (12) results in both a small footprint package and also a light package. A reel-to-reel flex tape (56) assembly provides pre-tested flex boards (16, 26, 36, and 46) resulting in a cost-effective manufacturable package for semiconductor components.
摘要:
A smartcard (10) is formed in part by a laminate layer (77). The laminate layer (77) is made up of a plurality of dielectric layers (11,30), insulating layers (45, 50), resistive layers (55), and electrically active structures. The electrically active structures include a capacitive structure (23) which is formed from one of the dielectric layers (11) and an antennae (32) which is made from a conductive layer that is formed into a spiral pattern on the another dielectric layer (30). These layers (11,30, 45, 50, 55) are formed separately and then pressed together to form the laminate layer (77).
摘要:
A method of packaging an electronic component includes forming a hole (24) in a substrate (21) having a first surface (22) opposite a second surface (23) and disposing and patterning a malleable layer (26) over the first surface (22) and over the hole (24) of the substrate (21). The malleable layer (26) has a third surface (27) opposite a fourth surface (28). A portion (29) of the fourth surface (28) is exposed by the hole (24) in the substrate (21). An electrically conductive layer is simultaneously disposed over the portion (29) of the fourth surface (28) and over a different portion of the third surface (27) of the malleable layer (26). The malleable layer (26) is deformed into the hole (24). Then, a semiconductor die (43) is coupled to the malleable layer (26), and an underencapsulant (37) is disposed under the semiconductor die (43) and over the hole (24).
摘要:
An improved laser etch-back process forms a metal feature on an area of a polymeric or other non-metallic substrate. The process comprises forming a metal layer on the area that includes a first, relatively thick section, and a second, relatively thin section. Thereafter, the metal layer is uniformly irradiated with a laser pulse, but not to vaporize metal from the thick section. Thus, the laser pulse selectively etches the thin section to remove the metal and expose the substrate, without disturbing the thick section, which forms the desired metal feature.
摘要:
An optoelectronic sensor is attached to an optically transparent substrate, such as glass, and encapsulated to form an optoelectronic device. An optical assembly can be mounted opposite the optoelectronic sensor. Filters and refractive index matching materials may be included between the optoelectronic sensor and the optically transparent substrate.
摘要:
A method for connecting substrates includes using an adhesive interposer structure (11) to bond a semiconductor device (26) to a substrate (18). The adhesive interposer structure (11) includes a non-conductive adhesive laminant (12) and conductive adhesive bumps (13). The conductive adhesive bumps (13) provide a conductive path between conductive bumps (27) on the semiconductor device (26) and conductive metal pads (21) located on the substrate (18). In an alternative embodiment, a conductive adhesive material (34) is screen or stencil printed into vias (39) located on a printed circuit board (38) to form conductive adhesive bumps (33). A non-conductive adhesive (52) is then screen or stencil printed onto the printed circuit board (38) adjacent the conductive adhesive bumps (33). A semiconductor die is then connected to the structure.
摘要:
In wafer-level chip-scale packaging and flip-chip packaging and assemblies, a solder cap is formed on a vertical pillar. In one embodiment, the vertical pillar overlies a semiconductor substrate. A solder paste, which may be doped with at least one trace element, is applied on a top surface of the pillar structure. A reflow process is performed after applying the solder paste to provide the solder cap.
摘要:
A process for etching a silicon substrate to form a feature such as a V-groove, utilizes a coating formed of an alkaline resistance polymer. A preferred polymer is poly(benzocyclobutene) resin. The coating is applied to the substrate and removed form a selected region whereupon the underlying silicon is etched with an alkaline solution. In one aspect, an optical fiber is inserted in the etched groove and coupled to an optical waveguide embedded within the coating.