摘要:
A terminal pad is formed on an active surface of an LSI chip, and a composite barrier metal layer is provided over this terminal pad. In the composite barrier metal layer, a plurality of low-elasticity particles composed of a silicone resin is dispersed throughout a metal base phase composed of NiP. The composite barrier metal layer has a thickness of, e.g., 3 μm, and the low-elasticity particles have a diameter of, e.g., 1 μm. A semiconductor device is mounted on a wiring board by bonding a solder bump to the composite barrier metal layer. The low-elasticity particles are thereby allowed to deform according to the applied stress when the semiconductor device is bonded to the wiring board via the solder bump, whereby the stress can be absorbed.
摘要:
In a conventional UBM made of, for example, Cu, Ni, or NiP, there has been a problem that when an electronic component is held in high-temperature conditions for an extended period, the barrier characteristic of the UBM is lost and the bonding strength decreases due to formation of a brittle alloy layer at a bonding interface. The present invention improves the problem of decrease in long-term connection reliability of a solder connection portion after storage at high temperatures. An electronic component comprises the electronic component includes an electrode pad formed on a substrate or a semiconductor element and a barrier metal layer formed to cover the electrode pad and the barrier metal layer comprises a CuNi alloy layer on the side opposite the side in contact with the electrode pad, the CuNi alloy layer containing 15 to 60 at % of Cu and 40 to 85 at % of Ni.
摘要:
A terminal pad is formed on an active surface of an LSI chip, and a composite barrier metal layer is provided over this terminal pad. In the composite barrier metal layer, a plurality of low-elasticity particles composed of a silicone resin is dispersed throughout a metal base phase composed of NiP. The composite barrier metal layer has a thickness of, e.g., 3 μm, and the low-elasticity particles have a diameter of, e.g., 1 μm. A semiconductor device is mounted on a wiring board by bonding a solder bump to the composite barrier metal layer. The low-elasticity particles are thereby allowed to deform according to the applied stress when the semiconductor device is bonded to the wiring board via the solder bump, whereby the stress can be absorbed.
摘要:
Passivation films 3a, 3b are formed to cover both surfaces of semiconductor substrate 1 which comprises terminal pads 2a, 2b on both surfaces. Openings 3c, 3d are provided at positions on passivation films 3a, 3b which match with terminal pads 2a, 2b. Throughholes 9 are formed inside of openings 3c, 3d to extend through terminal pad 2a, semiconductor substrate 1, and terminal pad 2b. Insulating layer 4 made of SiO2, SiN, SiO, or the like is formed on the inner surfaces of throughholes 9. Buffer layer 5 made of a conductive adhesive is formed to cover insulating layer 4 and terminal pads 2a, 2b in openings 3c, 3d. Further, conductive layer 6 made of a metal film is formed on buffer layer 5 by electrolytic plating, non-electrolytic plating, or the like.
摘要:
The present invention relates to a multivalent antibody comprising multiple heavy chain variable regions of antibody linked to each other via a linker comprising an amino acid sequence encoding an immunoglobulin domain or a fragment thereof.
摘要:
A simple manufacturing method for an organic electroluminescent panel in which organic electroluminescent elements are arranged and sealed by a sealing adhesive. The electroluminescent panel has excellent sealing properties and excellent durability as a result of the organic electroluminescent elements being adhered to one another by a heat-curable adhesive. The manufacturing method is for an organic electroluminescent panel in which at least a first electrode, an organic functional layer containing a light-emitting layer, an organic electroluminescent element having a second electrode, and a sealing substrate are bonded together on a substrate by the heat-curable adhesive. The method includes forming a heat-curable adhesive layer on the sealing substrate, subjecting the heat-curable adhesive layer formed on the sealing substrate to pre-heating treatment, bonding the pre-heated heat-curable adhesive layer to the organic electroluminescent element, and subjecting the heat-curable adhesive layer to heat curing, in the given order.
摘要:
A highly stable mutant of human IgG4 antibody is provided. Such antibody is an antibody in which the CH3 domain of human IgG4 is substituted with the CH3 domain of human IgG1 and which exhibits inhibited aggregate formation, an antibody in which the CH3 and CH2 domains of human IgG4 are substituted with the CH3 and CH2 domains of human IgG1, respectively, or an antibody in which arginine at position 409 indicated in the EU index proposed by Kabat et al. of human IgG4 is substituted with lysine and which exhibits inhibited aggregate formation.
摘要:
Disclosed are a coating method of forming a coating with a stable thickness from a coating solution with a low viscosity employing a slit-type die coater and an organic electroluminescence element prepared employing the coating method. The coating method employing a slit-type die coater comprises the steps of allowing a lip tip of the slit-type die coater to bring close to the substrate to form a coating solution bead between the lip tip and the substrate, and coating on the substrate a coating solution ejected from a slit outlet at the lip tip while relatively moving the slit-type die coater and the substrate, thereby forming at least two coating layers in the stripe shape, featured in that the lip tip has at least one groove in the coating region in the coating width direction, and a pressure at the slit outlet of the coating solution of the bead is negative or zero.
摘要:
A speaker edge includes a resin layer including a resin member and a fiber layer including a tangled fiber body. A melting temperature of the tangled fiber body is higher than a melting temperature of the resin member. The hardness of the tangled fiber body is lower than the hardness of the resin member.
摘要:
A method for manufacturing a semiconductor device includes forming a laminated structure of a plurality of metal films on a semiconductor substrate using an electroless plating method. The forming of the metal films includes: performing an electroless plating process including a reduction reaction using a first plating tank; and performing an electroless plating process by only a substitution reaction using a second plating tank. The electroless plating process including the reduction reaction that is performed using the first plating tank is performed in a shading environment, and the electroless plating process performed by only the substitution reaction using the second plating tank is performed in a non-shading environment.