摘要:
The invention is the technology of providing a packaging intermediate product that can serve as an interface substrate that is to be positioned between different circuitry types where the dimensions are approaching the sub 100 micrometer range. The invention involves a dielectric wafer structure where the first and second area surfaces of the wafer are separated by a distance that is of the order of the electrical via design length, and an array of spaced vias through the wafer arranged with each via filled with metal surrounded by a chemical metal deposition promoting layer with each via terminating flush with a wafer surface. The wafer structure is achieved by forming an array of blind via openings through the first surface of the dielectric wafer to a depth approaching the via design length, lining the walls for adhesion enhancement, filling the blind via openings completely with a chemically deposited metal, removing material at the first wafer surface thereby planarizing the filled vias, and removing material at the second wafer surface thereby exposing the vias at the design length.
摘要:
The invention is the technology of providing a packaging intermediate product that can serve as an interface substrate that is to be positioned between different circuitry types where the dimensions are approaching the sub 100 micrometer range. The invention involves a dielectric wafer structure where the first and second area surfaces of the wafer are separated by a distance that is of the order of the electrical via design length, and an array of spaced vias through the wafer arranged with each via filled with metal surrounded by a chemical metal deposition promoting layer with each via terminating flush with a wafer surface. The wafer structure is achieved by forming an array of blind via openings through the first surface of the dielectric wafer to a depth approaching the via design length, lining the walls for adhesion enhancement, filling the blind via openings completely with a chemically deposited metal, removing material at the first wafer surface thereby planarizing the filled vias, and removing material at the second wafer surface thereby exposing the vias at the design length.
摘要:
A microjoint interconnect structure comprising a dense array of metallic studs of precisely controllable height tipped with a joining metallurgy. The array is produced on a device chip that is to be attached to a carrier, or to a carrier along with other devices, some of which may be selected to have similar interconnect structures so as to form all together an assembled carrier that functions as a complete computing, communications or networking system.
摘要:
A carrier structure and method for fabricating a carrier structure with through-vias each having a conductive structure with an effective coefficient of thermal expansion which is less than or closely matched to that of the substrate, and having an effective elastic modulus value which is less than or closely matches that of the substrate. The conductive structure may include concentric via fill areas having differing materials disposed concentrically therein, a core of the substrate material surrounded by an annular ring of conductive material, a core of CTE-matched non-conductive material surrounded by an annular ring of conductive material, a conductive via having an inner void with low CTE, or a full fill of a conductive composite material such as a metal-ceramic paste which has been sintered or fused.
摘要:
Flexible and rigid interposers for use in the semiconductor industry and methods for manufacturing the same are described. Auto-catalytic processes are used to minimize the costs associated with the production of flexible interposers, while increasing the yield and lifetime. Electrical contact regions are easily isolated and the risk of corrosion is reduced because all portions of the interposer are plated at once. Leads projecting from the flexible portion of the interposers accommodate a greater variety of components to be tested. Rigid interposers include a pin projecting from a probe pad affixed to a substrate. The rigidity of the pin penetrates oxides on a contact pad to be tested. Readily available semiconductor materials and processes are used to manufacture the flexible and rigid interposers according to the invention. The flexible and rigid interposers can accommodate pitches down to 25 μm.
摘要:
Flexible and rigid interposers for use in the semiconductor industry and methods for manufacturing the same are described. Auto-catalytic processes are used to minimize the costs associated with the production of flexible interposers, while increasing the yield and lifetime. Electrical contact regions are easily isolated and the risk of corrosion is reduced because all portions of the interposer are plated at once. Leads projecting from the flexible portion of the interposers accommodate a greater variety of components to be tested. Rigid interposers include a pin projecting from a probe pad affixed to a substrate. The rigidity of the pin penetrates oxides on a contact pad to be tested. Readily available semiconductor materials and processes are used to manufacture the flexible and rigid interposers according to the invention. The flexible and rigid interposers can accommodate pitches down to 25 μm.
摘要:
Techniques for forming enhanced electrical connections are provided. In one aspect, an electrical connecting device comprises an electrically insulating carrier having one or more contact structures traversing a plane thereof. Each contact structure comprises an elastomeric material having an electrically conductive layer running along at least one surface thereof continuously through the plane of the carrier.
摘要:
Flexible and rigid interposers for use in the semiconductor industry and methods for manufacturing the same are described. Auto-catalytic processes are used to minimize the costs associated with the production of flexible interposers, while increasing the yield and lifetime. Electrical contact regions are easily isolated and the risk of corrosion is reduced because all portions of the interposer are plated at once. Leads projecting from the flexible portion of the interposers accommodate a greater variety of components to be tested. Rigid interposers include a pin projecting from a probe pad affixed to a substrate. The rigidity of the pin penetrates oxides on a contact pad to be tested. Readily available semiconductor materials and processes are used to manufacture the flexible and rigid interposers according to the invention. The flexible and rigid interposers can accommodate pitches down to 25 μm.
摘要:
A process for overcoming extreme topographies by first planarizing a cavity in a semiconductor substrate in order to create a planar surface for subsequent lithography processing. As a result of the planarizing process for extreme topographies, subsequent lithography processing is enabled including the deposition of features in close proximity to extreme topographic surfaces (e.g., deep cavities or channels) and, including the deposition of features within a cavity. In a first embodiment, the process for planarizing a cavity in a semiconductor substrate includes the application of dry film resists having high chemical resistance. In a second embodiment, the process for planarizing a cavity includes the filling of cavity using materials such as polymers, spin on glasses, and metallurgy.