摘要:
A through-substrate via (TSV) structure that is immune to metal contamination due to a backside planarization process is provided. After forming a through-substrate via (TSV) trench, a diffusion barrier liner is conformally deposited on the sidewalls of the TSV trench. A dielectric liner is formed by depositing a dielectric material on vertical portions of the diffusion barrier liner. A metallic conductive via structure is formed by subsequently filling the TSV trench. Horizontal portions of the diffusion barrier liner are removed. The diffusion barrier liner protects the semiconductor material of the substrate during the backside planarization by blocking residual metallic material originating from the metallic conductive via structure from entering into the semiconductor material of the substrate, thereby protecting the semiconductor devices within the substrate from metallic contamination.
摘要:
An assembly can include a microelectronic element such as, for example, a semiconductor element having circuits and semiconductor devices fabricated therein, and a plurality of electrical connectors, e.g., solder balls attached to contacts of the microelectronic element. The connectors can be surrounded by first, inner regions 200 of compressible dielectric material and second, outer regions of dielectric material. In one embodiment, an underfill can contact a face of the microelectronic element between respective connectors or second regions. The second regions can provide restraining force, such that during volume expansion of the connectors, the first regions can compress against the restraining force of the second regions.
摘要:
A semiconductor product comprises a semiconductor substrate having a top surface and a bottom surface including a semiconductor chip. The semiconductor substrate has a top surface and a perimeter. A barrier is formed in the chip within the perimeter. An Ultra Deep Isolation Trench (UDIT) is cut in the top surface of the chip extending down therein between the perimeter and the barrier. A ILD structure with low-k pSICOH dielectric and hard mask layers is formed over the substrate prior to forming the barrier and the UDIT. The ILD structure interconnection structures can be recessed down to the substrate aside from the UDIT.
摘要:
A method is provided for fabricating a 3D integrated circuit structure. According to the method, a first active circuitry layer wafer that includes active circuitry is provided, and a first portion of the first active circuitry layer wafer is removed such that a second portion of the first active circuitry layer wafer remains. Another wafer that includes active circuitry is provided, and the other wafer is bonded to the second portion of the first active circuitry layer wafer. The first active circuitry layer wafer is lower-cost than the other wafer. Also provided are a tangible computer readable medium encoded with a program for fabricating a 3D integrated circuit structure, and a 3D integrated circuit structure.
摘要:
A method for forming interconnects onto attachment points of a wafer includes the steps of providing a mold with a plurality of cavities having a predetermined shape, depositing a release agent on surfaces of the cavities, filling the cavities with an interconnect material to form the interconnects, removing the release agent from the mold, and attaching the interconnects to the attachment points of the wafer. An adhesive layer can optionally be deposited in addition to the release layer. The adhesive layer can be used, for example, to bond the chip to a package.
摘要:
A semiconductor structure including a vertical metal-insulator-metal capacitor, and a method for fabricating the semiconductor structure including the vertical metal-insulator-metal capacitor, each use structural components from a dummy metal oxide semiconductor field effect transistor located and formed over an isolation region located over a semiconductor substrate. The dummy metal oxide field effect transistor may be formed simultaneously with a metal oxide semiconductor field effect transistor located over a semiconductor substrate that includes the isolation region. The metal-insulator-metal capacitor uses a gate as a capacitor plate, a uniform thickness gate spacer as a gate dielectric and a contact via as another capacitor plate. The uniform thickness gate spacer may include a conductor layer for enhanced capacitance. A mirrored metal-insulator-metal capacitor structure that uses a single contact via may also be used for enhanced capacitance.
摘要:
Methods of forming and assemblies having hybrid interconnection grid arrays composed of a homogenous mixture of Pb-free solder joints and Pb-containing solder paste on corresponding sites of a printed board. The aligned Pb-free solder joints and Pb-containing solders are heated to a temperature above a melting point of the Pb-free solder joint for a sufficient time to allow complete melting of both the Pb-free solder joints and Pb-containing solder paste and the homogenous mixing thereof during assembly. These molten materials mix together such that the Pb from the Pb-containing solder disperses throughout substantially the entire Pb-free solder joint for complete homogenization of the molten materials to form the homogenous hybrid interconnect structures of the invention.
摘要:
A method of forming conductive pillars on a semiconductor wafer in which the conductive pillars are plated with a protecting coating of Ni, Co, Cr, Rh, NiP, NiB , CoWP, or CoP. Only the side of the conductive pillars are plated. The ends of the conductive pillars are free of the protective plating so that the conductive pillars can be readily joined to the pads of a packaging substrate. Also disclosed is a sidewall-protected conductive pillar having a protective coating of Ni, Co, Cr, Rh, NiP, NiB , CoWP, or CoP thereon.
摘要:
The invention is directed to an improved semiconductor chip that reduces crack initiation and propagation into the active area of a semiconductor chip. A semiconductor wafer includes dicing channels that separate semiconductor chips and holes through a portion of a semiconductor chip, which are located at the intersection of the dicing channels. Once diced from the semiconductor wafer, semiconductor chips are created without ninety degree angle corners.
摘要:
Test structures for electrically detecting BEOL failures are provided. In an embodiment, the structure comprises: an input/output connection disposed above a primary conductive pad which is embedded in an insulator; a dielectric layer disposed upon the insulator; a primary via extending through the dielectric layer down to the primary conductive pad for providing electrical connection between the input/output connection and the primary conductive pad; and a secondary via filled with a conductive material in electrical connection with the input/output connection, the secondary via extending through the dielectric layer down to a secondary interconnect in electrical connection with a secondary conductive pad that is insulated from the primary conductive pad.