Semiconductor processing methods of removing conductive material

    公开(公告)号:US07056194B2

    公开(公告)日:2006-06-06

    申请号:US10871126

    申请日:2004-06-18

    IPC分类号: B24B1/00

    摘要: The invention includes a semiconductive processing method of electrochemical-mechanical removing at least some of a conductive material from over a surface of a semiconductor substrate. A cathode is provided at a first location of the wafer, and an anode is provided at a second location of the wafer. The conductive material is polished with the polishing pad polishing surface. The polishing occurs at a region of the conductive material and not at another region. The region where the polishing occurs is defined as a polishing operation location. The polishing operation location is displaced across the surface of the substrate from said second location of the substrate toward said first location of the substrate. The polishing operation location is not displaced from said first location toward said second location when the polishing operation location is between the first and second locations. The invention also includes a semiconductor processing method of removing at least some of a conductive material from over a surface of a semiconductive material wafer. A polishing pad is displaced across an upper surface of the wafer from a central region of the wafer toward a periphery of the wafer, and is not displaced from the periphery to the central region.

    Method and apparatus for releasably attaching a polishing pad to a chemical-mechanical planarization machine

    公开(公告)号:US07001251B2

    公开(公告)日:2006-02-21

    申请号:US09928173

    申请日:2001-08-09

    IPC分类号: B24B1/00

    摘要: A method and apparatus for releasably attaching a planarizing medium, such as a polishing pad, to the platen of a chemical-mechanical planarization machine. In one embodiment, the apparatus can include several apertures in the upper surface of the platen that are coupled to a vacuum source. When a vacuum is drawn through the apertures in the platen, the polishing pad is drawn tightly against the platen and may therefore be less likely to wrinkle when a semiconductor substrate is engaged with the polishing pad during planarization. When the vacuum is released, the polishing pad can be easily separated from the platen. The apparatus can further include a liquid trap to separate liquid from the fluid drawn by the vacuum source through the apertures, and can also include a releasable stop to prevent the polishing pad from separating from the platen should the vacuum source be deactivated while the platen is in motion. In another embodiment, a signal can be applied to the platen to draw the polishing pad toward the platen via electrostatic or electromagnetic forces. In still another embodiment, the polishing pad can be attached to a pad support and conditioned on a separate jig.